Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Национальный исследовательский университет «МЭИ» Институт радиотехники и электроники им. В.А. Котельникова

Радиотехнический факультет

ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Направление подготовки: 11.04.01 Радиотехника

Магистерская программа: Радиотехнические методы и устройства формирования и обработки сигналов

Тип: академическая

Вид профессиональной деятельности: научно-исследовательская

Квалификация выпускника: магистр

1. ОБЩИЕ ПОЛОЖЕНИЯ

Основная профессиональная образовательная программа (далее – образовательная программа), реализуемая в МЭИ, представляет собой комплект документов, разработанный и утвержденный в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) с учетом профессиональных стандартов.

Образовательная программа представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных средств, методических материалов.

Нормативные документы для разработки образовательной программы

Нормативную правовую базу разработки образовательной программы составляют:

Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с последующими дополнениями и изменениями);

«Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры», утвержденный приказом Минобрнауки России от 19 декабря 2013 г. № 1367 (с последующими дополнениями и изменениями);

Федеральный государственный образовательный стандарт по направлению подготовки 11.04.01 Радиотехника высшего образования, утвержденный приказом Министерства образования и науки Российской Федерации от «30» октября 2014 г. №1409;

Нормативно-методические документы Минобрнауки России;

Устав МЭИ:

Локальные акты МЭИ;

Профессиональные стандарты:

Инженер-радиоэлектронщик (рег. № 102 от «19 » мая 2014 г. № 315н)

Специалист по проектированию и конструированию космических аппаратов и систем (рег. №5 от «28» ноября 2013 г. №702н).

Инженер связи (телекоммуникаций) (рег. № 195 от «31» октября 2014 г. № 866н).

Инженер-проектировщик в области связи (телекоммуникаций) (рег. № 107 от «19» мая 2014 г. № 316h).

2. ОБЩАЯ ХАРАКТЕРИСТИКА ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цель образовательной программы

Цель образовательной программы магистратуры состоит В информационнотелекоммуникационном обеспечении и формирования научно-интеллектуального базиса в задачах энергетической эффективности и безопасности России путем комплексного развития на мировом уровне системы подготовки и закрепления высококвалифицированных кадров, создания новых образовательных, научно-исследовательских и производственных технологий эффективной, надежной И экологически безопасной энергетики И других высокотехнологичных отраслей экономики. Магистерская программа обеспечивает научно-инженерных предприятий подготовку кадров высшей квалификации радиоэлектронной, ракетно-космической промышленности, предприятий оборонного комплекса и силовых ведомств.

Объектами профессиональной деятельности выпускников, освоивших программу магистратуры, являются создание радиотехнических систем, комплексов и устройств радиолокации, радионавигации и радиосвязи на основе изученных методов и средств их проектирования, моделирования, экспериментальной отработки.

Форма обучения: очная.

Объем программы: 120 зачетных единиц.

Сроки получения образования: по очной форме обучения, включая каникулы, предоставляемые после прохождения государственной итоговой аттестации, составляет 2 года.

При обучении по индивидуальному учебному плану срок обучения составляет 2 года.

Использование электронного обучения, дистанционных образовательных технологий и сетевой формы при реализации образовательной программы.

При реализации образовательной программы магистратуры электронное обучение, дистанционные образовательные технологии и сетевая форма не используются.

Язык обучения: русский.

Требования к абитуриенту: абитуриент должен иметь документы в соответствии с Правилами приема в МЭИ, которые устанавливаются решением Ученого совета МЭИ, и пройти испытания согласно утвержденной программе.

3. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Область профессиональной деятельности выпускника:

Область профессиональной деятельности выпускников, освоивших программу магистратуры, включает исследования и разработки, направленные на создание и обеспечение функционирования устройств и систем, основанных на использовании электромагнитных колебаний и волн и предназначенных для передачи, приема и обработки информации, получения информации об окружающей среде, природных и технических объектах, а также для воздействия на природные или технические объекты с целью изменения их свойств.

Объекты профессиональной деятельности выпускника:

Объектами профессиональной деятельности выпускников, освоивших программу магистратуры, являются радиотехнические системы, комплексы и устройства, методы и средства их проектирования, моделирования, экспериментальной отработки.

Вид профессиональной деятельности выпускника:

• научно-исследовательская.

Задачи профессиональной деятельности выпускника:

- разработка рабочих планов и программ проведения научных исследований и технических разработок, подготовка отдельных заданий для исполнителей;
- сбор, обработка и систематизация научно-технической информации по теме планируемых исследований, выбор методик и средств решения сформулированных задач;
- моделирование объектов и процессов в радиотехнических устройствах с целью анализа и оптимизации их параметров с использованием имеющихся средств исследований, включая стандартные пакеты прикладных программ;
- разработка программ экспериментальных исследований, ее реализация, включая выбор технических средств и обработку результатов;

- подготовка научно-технических отчетов в соответствии с требованиями нормативных документов, составление обзоров и подготовка публикаций;
 - разработка рекомендаций по практическому использованию полученных результатов;
- работа в качестве преподавателя в профессиональных образовательных организациях и образовательных организациях высшего образования по учебным дисциплинам предметной области данного направления под руководством профессора, доцента или старшего преподавателя.

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения программы магистратуры у выпускника должны быть сформированы общекультурные, общепрофессиональные и профессиональные компетенции.

Выпускник, освоивший программу магистратуры, должен обладать следующими общекультурными компетенциями:

- способностью использовать иностранный язык в профессиональной сфере (ОК-1);
- способностью использовать на практике умения и навыки в организации исследовательских и проектных работ, в управлении коллективом (ОК-2);
- готовностью к активному общению с коллегами в научной, производственной и социально-общественной сферах деятельности (ОК-3);
- способностью адаптироваться к изменяющимся условиям, переоценивать накопленный опыт, анализировать свои возможности (ОК-4).

Выпускник, освоивший программы магистратуры, должен обладать следующими общепрофессиональными компетенциями:

- способностью понимать основные проблемы в своей предметной области, выбирать методы и средства их решения (ОПК-1);
- способностью использовать результаты освоения дисциплин программы магистратуры (ОПК-2);
- способностью демонстрировать навыки работы в коллективе, порождать новые идеи (креативность) (ОПК-3);
- способностью самостоятельно приобретать и использовать в практической деятельности новые знания и умения в своей предметной области (ОПК-4);
- готовностью оформлять, представлять, докладывать и аргументировано защищать результаты выполненной работы (ОПК-5).

Выпускник, освоивший программу магистратуры, должен обладать профессиональными компетенциями:

- способностью самостоятельно осуществлять постановку задачи исследования, формирование плана его реализации, выбор методов исследования и обработку результатов (ПК-1);
- способностью выполнять моделирование объектов и процессов с целью анализа и оптимизации их параметров с использованием имеющихся средств исследований, включая стандартные пакеты прикладных программ (ПК-2);
- способностью разрабатывать и обеспечивать программную реализацию эффективных алгоритмов решения сформулированных задач с использованием современных языков программирования (ПК-3);
- способностью к организации и проведению экспериментальных исследований с применением современных средств и методов (ПК-4);
- готовностью к составлению обзоров и отчетов по результатам проводимых исследований, подготовке научных публикаций и заявок на изобретения, разработке рекомендаций по практическому использованию полученных результатов (ПК-5);
- способность проводить лабораторные и практические занятия с обучающимися, руководить курсовым проектированием и выполнением выпускных квалификационных работ бакалавров (ПК-18).

Профессиональные компетенции (дополнительные):

- разработка устройств генерирования, приема и обработки радиосигналов для радиоэлектронных средств различного назначения (ПК-20).

Компетентностно-формирующая часть учебного плана, определяющая этапы формирования компетенций дисциплинами учебного плана, представлена в *приложении 1 к ОПОП*.

5. УЧЕБНЫЙ ПЛАН И КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Учебный план и календарный учебный график представлены в приложении 2 к ОПОП.

6. РАБОЧИЕ ПРОГРАММЫ ДИСЦИПЛИН

Аннотации всех учебных дисциплин представлены в приложении 3 к ОПОП.

7. ПРОГРАММЫ ПРАКТИК

Аннотации всех практик (включая НИР) представлены в приложении 4 к ОПОП.

8. ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ

Государственная итоговая аттестация является обязательной и осуществляется после освоения всех предусмотренных образовательной программой дисциплин и практик в полном объеме. Государственная итоговая аттестация включает в себя подготовку к защите и защиту выпускной квалификационной работы.

9. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Фонды оценочных средств представлены в приложении 5 к ОПОП.

10. ФАКТИЧЕСКОЕ РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ

Кадровое обеспечение образовательного процесса приведено в приложении 6 к ОПОП.

Руководитель образовательной программы: Гребенко Юрий Александрович профессор кафедры Формирования и обработки радиосигналов, д.т.н., профессор.

- В 2014-2017 гг. Гребенко Ю.А. руководил следующими научно-техническими работами:
 - Изготовление двух опытных образцов радиочастотного блока МИФТ.464345.001 (HTP №2073170),
 - Разработка опытных образцов широкополосного СВЧ-усилителя с высоким коэффициентом усиления (ОКР №2024170),
 - Разработка опытных образцов двух модификаций малогабаритного широкополосного СВЧ-синтезатора частот с цифровым управлением и низким уровнем побочных спектральных составляющих (ОКР №2028160),
 - ОКР «ИППУ 5» (дог. №2056130), сроки выполнения работы 01.04.2013 -28.02.2015,
 - ОКР «Сантиметр-МЭИ-2» (дог. №2018150), сроки выполнения работы 01.07.2014 -30.10.2015,
 - ОКР "Разработка опытных образцов двух модификаций малогабаритного широкополосного СВЧ-синтезатора частот с цифровым управлением и низким уровнем побочных спектральных составляющих" (дог. №2018150),
 - ОКР "Разработка широкополосного синтезатора частот с цифровым управлением" (дог. №2018150).

Основные публикации д.т.н., проф. Гребенко Юрия Александровича за 2013-2017 гг.

- 1. Цифровая обработка сигналов в радиоприемных устройствах. Практикум: учебное пособие / Ю.А. Гребенко, А.М. Юмашева, С.В. Архипова; под ред. Ю.А. Гребенко. М.: Издательство МЭИ, 2013. 72 с.
- 2. Гребенко Ю.А., Сое Минн Тху Метод расчета комплексных цифровых полосовых фильтров // Вестник МЭИ, 2015, № 3, С.85 89
- 3. Гребенко Ю.А., Поляк Р.И. Линеаризация фазочастотной характеристики фильтра нижних частот // Вестник МЭИ, 2015, № 3, С.90 94
- 4. Гребенко Ю.А., Поляк Р.И. Линеаризация фазочастотной характеристики комплексного аналогового полосового фильтра // Вестник МЭИ, 2015, №4, С.79-85
- 5. Гребенко Ю.А., Сое Минн Тху Метод расчета комплексных цифровых полосовых фильтров с параллельной структурой //Вестник МЭИ, 2016, №6, С.101-107.
- 6. Гребенко Ю.А., Зинченко М.Ю. Реализация алгоритма декодирования кода с малой плотностью проверок на четность на ПЛИС и исследование его параметров //Сборник трудов МНТК «СИНХРОИНФО 2016», Москва, 2016, С.169-171
- 7. Гребенко Ю.А., Поляк Р.И., Филатов В.А., Снижение неравномерности группового времени запаздывания в аналоговых комплексных полосовых фильтрах приемника сигналов систем спутниковой навигации //26-я Международная Крымская конференция «СВЧ-техника и телекоммуникационные технологии» (КрыМиКо'2016). Севастополь, 4—10 сентября 2016 г.: материалы конф. в 13 т. Москва; Минск; Севастополь, 2016. Т.3. С.475-481
- 8. Гребенко Ю.А., Поляк Р.И. Влияние режекторного фильтра на эффективность линеаризации фазочастотной характеристики аналогового полосового фильтра //Вестник МЭИ, 2017 №4, С.135-141
- 9. Зинченко М.Ю., Гребенко Ю.А. Цифровой радиоканал с использованием низкоплотностного кодирования //Системы синхронизации, формирования и обработки сигналов в инфокоммуникациях: Междунар. НТК "СИНХРОИНФО-2017". Сб. трудов. Казань. 2017. С.193-194
- 10. Сое Минн Тху, Гребенко Ю.А., Метод расчёта по НЧ-прототипу цифровых фильтров нижних частот с линейными ФЧХ //Современная наука: актуальные проблемы и пути их решения (сб. научных трудов), 2017 г. 2307-8782 №3 (34), С.36-42

Докладчик на Международных научно-технических семинарах «Системы синхронизации, формирования и обработки сигналов в инфокоммуникациях», 2014-2017 гг.

Член диссертационного Совета: Д 212.131.01.

Для реализации образовательной программы используется материально-техническая база, обеспечивающая проведение всех предусмотренных учебным планом видов дисциплинарной и междисциплинарной подготовки, лабораторной, практической, научно-исследовательской и самостоятельной работы обучающихся.

Перечень материально-технического обеспечения включает в себя:

- лаборатории: Устройства приема и обработки сигналов, Теория и техника радиолокации и радионавигации, Радиотехнические системы передачи информации, Цифровые телевизионные и видеотехнические системы, Радиосистемы управления, оснащенные современным оборудованием (в том числе сложным) и расходными материалами;
 - компьютерные (дисплейные) классы;
- аудитории, оборудованные мультимедийным и (или) презентационным оборудованием;
 - комплект лицензионного программного обеспечения.

Описание материально-технического обеспечения образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

Учебно-методическое обеспечение образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

ОБРАЗОВАТЕЛЬНУЮ ПРОГРАММУ СОСТАВИЛ:

Профессор, кафедры Формирования и обработки радиосигналов

к.т.н., доцент

Руководитель магистерской программы

Зав.кафедрой Формирования и обработки радиосигналов

Д.т.н., проф.

Зав. кафедрой Формирования и обработки радиосигналов

Д.т.н., проф.

Т.И.Болдырева

Ю.А. Гребенко

Ю.А.Гребенко

Директор института радиотехники и электроники им. В.А. Котельникова

Д.т.н., проф.

И.Н.Мирошникова

СОГЛАСОВАНО:

Первый проректор – проректор по учебной работе

Начальник учебного управления

Начальник отдела методического обеспечения и управления качеством образования

Т.А. Степанова

Д.А. Иванов

А.В. Носов