Аннотации дисциплин

Оглавление

Физика	2
Химия	3
Информатика	4
Теоретическая механика	5
Сопротивление материалов	6
Теоретические основы электротехники	7
Конструкционное материаловедение	8
Электротехническое материаловедение	9
Промышленная электроника	10
Экономика	11
Основы конструирования машин	12
Социология	13
Политология	14
Метрология и информационно-измерительная техника	15
Электрические машины	16
Правоведение	17
Общая энергетика	18
Электрические и электронные аппараты	19
Теория автоматического управления	20
Электротехнология	21
Безопасность жизнедеятельности	22
Экология	23
Электрический привод	24
Электроэнергетические системы и сети промышленного электроснабжения	25
Приемники электрической энергии	
Переходные процессы в системах электроснабжения	27
Основы электроснабжения	28
Монтаж и наладка электрооборудования	
Микропроцессорные средства в электроснабжении	30
Электроснабжение потребителей и режимы	
Эксплуатация и ремонт электрооборудования	
Основы релейной защиты и автоматики	
Инженерный эксперимент в электроснабжении	

Физика

Трудоемкость в зачетных единицах:	14	1,2,3семестры
Часов (всего) по учебному плану:	504 ч	1,2,3семестры
Лекции	44 ч	1,2,3семестры
Практические занятия	28 ч	1,2семестры
Лабораторные работы	44 ч	1,2,3семестры
Самостоятельная работа	316 ч	1,2,3семестры
Курсовые проекты (работы)	-	-
Экзамены	72 ч	1,2 семестры
Зачет	18 ч	3 семестр

<u>Цель дисциплины:</u> изучение основных физических законов, теорий, методов классической и современной физики. Получение фундаментального образования, способствующего дальнейшему развитию личности.

Основные разделы дисциплины

Физические основы механики. Кинематика. Динамика материальной точки и твердого тела. Законы изменения и сохранения импульса, механической энергии, момента импульса. Механический принцип относительности.

Основы специальной теории относительности

Основы молекулярной физики. Термодинамические параметры состояния системы. Изопроцессы идеальных газов. Политропный процесс. Первое начало термодинамики. Классическая теория теплоемкостей идеальных газов и её ограниченность. Круговые процессы, тепловые машины. Второе начало термодинамики. Закон Максвелла для распределения молекул по скоростям и кинетическим энергиям. Длина свободного пробега. Явления диффузии, внутреннего трения и теплопроводности.

Электростатика. Электрический заряд. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции полей. Теорема Остроградского-Гаусса для расчета напряженности поля. Электростатическое поле в диэлектрике. Проводники в электростатическом поле. Электрическая емкость. Энергия заряженного проводника, конденсатора.

Постоянный электрический ток. Закон Ома для плотности тока. Обобщенный закон Ома. Разность потенциалов, ЭДС, напряжение. Границы применимости закона Ома.

Магнитное поле постоянного тока. Магнитное поле. Вектор индукции. Сила Лоренца. Закон Ампера. Контур с током в магнитном поле. Магнитное поле тока. Действие магнитного поля на проводник и контур с током. Явление электромагнитной индукции. Явления самоиндукции и взаимной индукции. Индуктивность и взаимная индуктивность. Энергия магнитного поля системы проводников с токами. Объемная плотность энергии магнитного поля. Намагниченность. Напряженность магнитного поля. Элементарная теория диа- и парамагнетиков. Ферромагнетики. Система уравнений Максвелла в интегральной и дифференциальной формах.

Колебания. Гармонические колебания, дифференциальное уравнение и энергия этих колебаний. Пружинный маятник. Затухающие электромагнитные и механические колебания. Дифференциальное уравнение вынужденных колебаний и его решение. Резонанс токов и напряжений.

Волны в упругой среде. Электромагнитные волны. Волны. Уравнение бегущей волны в упругой среде. Волновое уравнение. Стоячие волны и их свойства. Электромагнитные волны и их свойства. Энергия электромагнитных волн. Вектор Умова-Пойнтинга.

Волновая оптика. Интерференция света. Дифракция света. Поляризация света. Естественный, поляризованный и частично поляризованный свет. Дисперсия света. Фазовая и групповая скорости света. Поглощение света.

Элементы квантовой и атомной физики. Тепловое излучение тел и его характеристики. Черное тело. Законы теплового излучения черного тела. Внешний фотоэффект. Фотоны. Давление света. Единство корпускулярных и волновых свойств света. Внутренний фотоэффект. Элементы физики лазеров. Постулаты Бора.

Химия

Трудоемкость в зачетных единицах:	4	1 семестр
Часов (всего) по учебному плану:	144 ч	1 семестр
Лекции	12 ч	1 семестр
Практические занятия	12 ч	1 семестр
Лабораторные работы	12 ч	1 семестр
Самостоятельная работа	72 ч	1 семестр
Курсовые проекты (работы)		
Экзамен	36 ч	1 семестр

<u>Цель дисциплины:</u> изучение общих законов и принципов химии для последующего использования в специальных дисциплинах и спецкурсах, для принятия обоснованных решений в профессиональной деятельности.

Основные разделы дисциплины

Предмет химии. Основные понятия и законы химии; Основные положения квантовомеханической модели строения атома. Принципы формирования электронной структуры атомов. Периодическая система элементов и периодический закон. Периодическое изменение свойств элементов и их соединений; Химическая связь. Структура и свойства органических и неорганических молекул. Структура и свойства комплексных соединений. Химия вещества в конденсированном состоянии; Общие закономерности химических процессов. Энергетика и кинетика процессов. Равновесное состояние процессов; Дисперсные системы. Растворы. Свойства растворов неэлектролитов и электролитов. Равновесия в растворах электролитов; Закономерности протекания электрохимических процессов. Гальванические элементы. Электролиз и его применение; Химическая и электрохимическая коррозия. Защита металлов от коррозии.

Информатика

Трудоемкость в зачетных единицах:	5	2 семестр
Часов (всего) по учебному плану:	180 ч	2 семестр
Лекции	16 ч	2 семестр
Практические занятия	-	2 семестр
Лабораторные работы	16 ч	2 семестр
Самостоятельная работа	80 ч	2 семестр
Курсовые проекты (работы)		
Экзамен	36 ч	2 семестр

<u>Цель дисциплины:</u>изучение принципов и освоение подходов к поиску, обработке и анализу информации, в том числе с использованием компьютерных, сетевых и информационных технологий, алгоритмизации задач и реализации алгоритмов с использованием программных средств.

Основные разделы дисциплины

Понятие информации. Принцип работы компьютера. Алгоритмы и алгоритмизация. Визуализация алгоритмов. Программирование. Программное обеспечение. Обзор языков высокого уровня. Технология программирования. Базы данных. Телекоммуникации. Модели решения функциональных и вычислительных задач. Аппаратура компьютера. Технические средства реализации информационных процессов. Интегрированные автоматизированные системы. Информационные технологии.

Теоретическая механика

Трудоемкость в зачетных единицах:	4	3 семестр
Часов (всего) по учебному плану:	144 ч	3 семестр
Лекции	16 ч	3 семестр
Практические занятия	16 ч	3 семестр
Лабораторные работы	-	-
Самостоятельная работа	76 ч	
Курсовые проекты (работы)	-	-
Экзамен	36 ч	3 семестр

<u>Цель дисциплины:</u> изучение общих законов движения и равновесия механических систем тел, а также овладение основными алгоритмами исследования равновесия и движения.

Основные разделы дисциплины

- 1. Статика: Предмет теоретической механики, ее основные разделы. Модели тел. Аксиомы статики. Связи и их реакции. Понятие эквивалентности систем сил. Теорема об эквивалентности произвольной системы сил двум силам. Момент силы относительно точки и оси. Главный вектор и главный момент системы сил. Теорема об эквивалентности двух систем сил. Условия равновесия произвольной системы сил. Условия равновесия плоской системы сил. Пара сил, момент пары сил. Теорема об эквивалентности и о сложении двух пар сил. Теорема об эквивалентности и паре сил (теорема Пуансо). Классификация систем сил. Теорема Вариньона. Система параллельных сил. Центр параллельных сил. Центр тяжести.
- 2. Кинематика: Три способа задания движения точки. Скорость и ускорение точки. Угловая скорость тела. Распределение скоростей точек тела в произвольном движении. Теорема о независимости угловой скорости тела от выбора полюса. Угловое ускорение тела. Распределение ускорений точек тела в произвольном движении. Теорема о проекциях скоростей двух точек тела. Угловая скорость и угловое ускорение тела, скорость и ускорение точек тела, совершающего поступательное движение, вращение вокруг неподвижной оси, плоскопараллельное движение.
- <u>3. Динамика:</u> Законы Ньютона. Дифференциальное уравнение материальной точки. Дифференциальное уравнение движения материальной точки в неинерциальной системе координат. Условия, при которых системы координат являются инерциальными. Центр масс системы материальных точек. Момент инерции системы материальных точек относительно оси. Моменты инерции однородных тел: стержня, диска, кольца. Теорема Гюйгенса-Штейнера. Классификация связей. Возможные, виртуальные, действительные скорости и перемещения. Работа, мощность силы. Определение идеальных связей. Примеры идеальных связей. Общее уравнение динамики (Принцип Даламбера-Лагранжа). Принцип виртуальных перемещений (Принцип Лагранжа). Виртуальные скорости. Принцип Журдена. Кинетическая энергия системы материальных точек. Теорема Кёнига. Кинетическая энергия твёрдого тела при его простейших движениях. Обобщённые координаты, обобщённые скорости, связь изохронных вариаций обобщённых координат с виртуальными перемещениями. Число степеней свободы системы материальных точек. Обобщённые силы. Условия равновесия в обобщённых координатах. Уравнения Лагранжа второго рода. Структура уравнений Лагранжа второго рода. Потенциальные силы. Свойства потенциальных сил. Потенциальная энергия. Полная механическая энергия. Обобщенные потенциальные силы. Функция Лагранжа. Уравнения Лагранжа второго рода для систем с потенциальными силами. Обобщённый интеграл Якоби.

Сопротивление материалов

Трудоемкость в зачетных единицах:	5	4 семестр
Часов (всего) по учебному плану:	180 ч	4 семестр
Лекции	16 ч	4 семестр
Практические занятия	16 ч	4 семестр
Лабораторные работы	-	-
Самостоятельная работа	91,7 ч	4 семестр
Курсовая работа	36 ч	4 семестр
Экзамен	36 ч	4 семестр

<u>Цель дисциплины:</u> формирование у студентов подходов к решению комплексных задач расчетов на прочность, обучение студентов выбору конструкционных материалов и расчетных схем основных типов конструкций, получение студентами необходимых сведений по расчету элементов конструкций и деталей машин на прочность, жесткость и устойчивость.

Основные разделы дисциплины

Внутренние силы и метод сечений. Основные виды деформаций стержней. Понятие о напряжениях и деформациях. Вопросы прочности и надежности. Расчет на прочность по допускаемым напряжениям. Коэффициенты запаса. Расчеты на прочность и жесткость при растяжении (сжатии). Геометрические характеристики сечений. Кручение. Расчет пружин. Расчеты на прочность и жесткость при изгибе. Рациональные поперечные сечения. Определение перемещений по формуле Максвелла-Мора. Сложные виды деформаций стержней. Условия применения принципа суперпозиции. Косой изгиб. Внецентренное растяжение (сжатие). Расчет валов. Расчеты на усталость. Проектный расчет валов редукторов. Расчеты на устойчивость сжатых стержней. Особенности практических расчетов на устойчивость. Условие устойчивости. Рациональные типы поперечных сечений сжатых стержней.

Задачей дисциплины является изучение методов прочностных расчетов элементов конструкций, развитие навыков инженерного подхода к решению комплексных задач проектирования и расчета конструкций. Правильный расчет — путь к пониманию работы конструкции и к экономии материалов наиболее безопасным путем.

Внутренние силы и метод сечений. Основные виды деформаций стержней. Понятие о напряжениях и деформациях. Вопросы прочности и надежности. Расчет на прочность по допускаемым напряжениям. Коэффициенты запаса. Расчеты на прочность и жесткость при растяжении (сжатии). Геометрические характеристики сечений. Кручение. Расчет пружин. Расчеты на прочность и жесткость при изгибе. Рациональные поперечные сечения. Определение перемещений по формуле Максвелла-Мора. Сложные виды деформаций стержней. Условия применения принципа суперпозиции. Косой изгиб. Внецентренное растяжение (сжатие). Расчет валов. Расчеты на усталость. Проектный расчет валов редукторов. Расчеты на устойчивость сжатых стержней. Особенности практических расчетов на устойчивость. Условие устойчивости. Рациональные типы поперечных сечений сжатых стержней.

Задачей дисциплины является изучение методов прочностных расчетов элементов конструкций, развитие навыков инженерного подхода к решению комплексных задач проектирования и расчета конструкций. Правильный расчет — путь к пониманию работы конструкции и к экономии материалов наиболее безопасным путем.

Теоретические основы электротехники

Трудоемкость в зачетных единицах:	20	3,4,5 семестры
Часов (всего) по учебному плану:	720 ч	3,4,5 семестры
Лекции	48 ч	3,4,5 семестры
Практические занятия	80 ч	3,4,5 семестры
Лабораторные работы	-	3,4,5 семестры
Самостоятельная работа	356 ч	3,4,5 семестры
Курсовые проекты (работы)	-	-
Экзамены	108 ч	3,4,5 семестры

<u>Цель дисциплины:</u> формирование теоретической базы знаний для овладения специальными дисциплинами, чтения электротехнической литературы и квалифицированного взаимодействия со специалистами на языке электротехники.

Основные разделы дисциплины

Предмет дисциплины Теоретические основы электротехники (ТОЭ). Основные понятия и законы теории электрических цепей. Линейные электрические цепи постоянного тока. Линейные электрические цепи синусоидального тока. Линейные электрические цепи несинусоидального тока. Трехфазные цепи. Высшие гармоники и симметричные составляющие ЭДС, токов и напряжений трехфазных цепей. Переходные процессы в линейных цепях. Четырехполюсники и электрические фильтры. Установившиеся режимы в цепях с распределенными параметрам. Переходные процессы в цепях с распределенными параметрами. Установившиеся режимы в нелинейных электрических и магнитных цепях. Переходные процессы в нелинейных цепях. Основы теории электромагнитного поля. Электростатическое поле. Стационарные электрические и магнитные поля. Переменное электромагнитное поле.

Конструкционное материаловедение

Трудоемкость в зачетных единицах:	3	3 семестр
Часов (всего) по учебному плану:	108 ч	3 семестр
Лекции	16 ч	3 семестр
Практические занятия	-	-
Лабораторные работы	16 ч	3 семестр
Самостоятельная работа	58 ч	3 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	3 семестр

<u>Цель дисциплины</u>: изучение основных конструкционных материалов для последующего использования полученных знаний в практической деятельности. Формирование системы знаний о физических процессах, происходящих в конструкционных материалах в условиях эксплуатации.

<u>Основные разделы дисциплины:</u>Кристаллическое строение металлов. Анизотропия. Полиморфизм. Механизм и основные этапы кристаллизации. Дефекты кристаллической решетки.

Диаграммы состояния. Методы построения диаграмм состояния. Общие принципы построения диаграммы «железо-цементит». Структурные составляющие сплавов железа с углеродом, их свойства. Критические точки. Структурные превращения в доэвтектоидных и заэвтектоидных сталях.

Углеродистые и легированные стали. Чугуны. Состав и маркировка углеродистых сталей. Примеси и их влияние на свойства стали.

Основы термической обработки. Диффузионное и бездиффузионное превращения аустенита. Изотермическое превращение аустенита. Возврат и рекристаллизация. Отжиг первого рода (рекристаллизационный, диффузионный). Цветные металлы и сплавы на их основе. Сплавы на основе меди (бронзы и латуни). Состав, свойства и маркировка сплавов. Сплавы на основе алюминия (деформируемые неупрочняемые, деформируемые упрочняемые, литейные). Маркировка сплавов. Термическая обработка деформируемых упрочняемых сплавов.

Электротехническое материаловедение

Трудоемкость в зачетных единицах:	4	4 семестр
Часов (всего) по учебному плану:	144 ч	4 семестр
Лекции	16 ч	4 семестр
Практические занятия	-	-
Лабораторные работы	16 ч	4 семестр
Самостоятельная работа	76 ч	4 семестр
Курсовые проекты (работы)	-	-
Экзамен	36 ч	4 семестр

Цель дисциплины:изучение основ электротехнического материаловедения практической последующего использования полученных знаний деятельности. В Формирование системы знаний физических процессах, происходящих 0 электротехнических материалах в условиях эксплуатации.

<u>Основные разделы дисциплины:</u> Классификация, области применения электротехнических материалов. Основные параметры электротехнических материалов. Общие представления об электропроводности диэлектриков. Электропроводность твердых, газообразных и жидких диэлектриков.

Поляризация в электротехнических материалах.. Диэлектрическая проницаемость. Виды поляризации.

Потери в электротехнических материалах. Расчет полных и удельных диэлектрических потерь на переменном напряжении. Виды диэлектрических потерь.

Пробой в твердых, жидких и газообразных диэлектриках. Пробивное напряжение и электрическая прочность. Определение электрической прочности. Виды пробоя в диэлектриках.

Диэлектрические материалы, используемые в электроэнергетике и электротехнике

Механические, термические и физико-химические свойства диэлектриков. Газообразные диэлектрики. Электроизоляционные жидкости. Полимеры, пластмассы, пленки. Неорганические диэлектрики. Свойства и применение лаков и компаундов. Активные диэлектрики, свойства, материалы

Магнитные материалы. Магнитные свойства вещества. Классификация веществ по магнитным свойствам. Намагничивание магнитных материалов (кривая намагничивания).

Проводниковые и полупроводниковые материалы.

Общие сведения о полупроводниках. Собственные и примесные полупроводники. Зависимость от температуры основных параметров полупроводников. Основные эффекты в полупроводниках.

Промышленная электроника

Трудоемкость в зачетных единицах:	5	4 семестр
Часов (всего) по учебному плану:	180 ч	4 семестр
Лекции	16 ч	4 семестр
Практические занятия	-	4 семестр
Лабораторные работы	16 ч	4 семестр
Самостоятельная работа	112 ч	4 семестр
Курсовые проекты (работы)	-	-
Экзамен	36 ч	4 семестр

<u>Цель дисциплины</u>:ознакомление с современной элементной базой устройств промышленной электроники, используемых, как в схемах информационной, так силовой электроники. Изучение основных схем аналоговой, импульсной и цифровой электроники на базе интегральных схем и микропроцессорной техники.

Основные разделы дисциплины:место электроники в современной технике.

Полупроводниковые приборы: Устройство, принцип работы, характеристики и параметры основных типов полупроводниковых приборов: диоды, стабилитроны, фотодиоды, оптроны, транзисторы биполярные, составные, полевые (с управляемым р-п переходом, с встроенным каналом, с индуцируемым каналом), IGBT транзисторы, тиристоры, симисторы. Ключевой режим работы транзисторов.

Операционные усилители и основные схемы на ОУ.

Операционный усилитель (ОУ): основные свойства. передаточная характеристика.

Основные положения теории обратных связей.

Усилитель неинвертирующий и инвертирующий, суммирующий усилитель, интегрирующий усилитель, мультивибратор, ждущий мультивибратор, компаратор.

Элементы и схемы цифровой техники.

Логические элементы: И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ - таблицы состояний.

Асинхронный и синхронный RS триггер, T-триггер, D-триггер, JK триггер: принцип работы, таблица состояний. Дешифраторы, шифраторы, мультиплексоры, счётчики импульсов, ЦАП, АЦП, Регистры: последовательные и параллельные, сумматор и полусумматор, цифровой компаратор. Программируемые логические интегральные схемы (АЛУ), принцип работы микропроцессора.

Экономика

Трудоемкость в зачетных единицах:	4	6 семестр
Часов (всего) по учебному плану:	144 ч	6 семестр
Лекции	16 ч	6 семестр
Практические занятия	16 ч	6 семестр
Лабораторные работы		6 семестр
Самостоятельная работа	76 ч	6 семестр
Курсовые проекты (работы)		
Экзамен	36 ч	6 семестр

<u>Цель дисциплины:</u> изучение основ экономики и управления в области электроэнергетики и электротехники для последующего использования их при проведении технико-экономических расчетов, формирование понимания экономических аспектов области профессиональной деятельности.

Основные разделы дисциплины:

Базовыеэкономическиепонятия. Экономическая эффективность ипринципсравнительно гопреимущества. Криваяпроизводственных возможностей. Экономический рост. Теорияпотре бительского поведения. Ресурсы предприятия и ихи использование. Капитал: понятие. Круго обор отиоборот капитала. В иды производительного капитала предприятия. Основные средства предприятия. Методы повышения эффективностии спользования. Показателии спользования оборудо вания и горабочей мощности. Оборотные средства предприятия. Показатели оценки и пути повышения эффективностии спользования оборотных средств. Трудовые ресурсы. Капитало образующие инвестиции предприятия. Теория спроса и предложения. Теория производства. Издержки и прибыль. Издержки и классификация. Производственная функция. Общие свойства производственных функций. Изокванта. Картаизоквант. Равновеси е производителя. Валовой, средний и предельный продукт переменного фактора: взаимосвязь показателей и графическое представлени е. Связьмеж дусредними/предельным и издержкам и исредним/предельным продуктом переменного фактора. Оптимум поиздержкам. Концепция прибыли. Рыночная система. Типыры ночных структур. Субъектыры нка. Понят и еры нка и усредения на при на пр

потипуконкуренцииних краткая характеристика. Входные барьеры вотрасль. Кривые спросанап родукцию одной фирмы в различных моделях рынка. Предприятие в условиях совершенной конк уренции. Валовая, средняя и предельная выручка в условиях совершенной конкуренции. Оптими зациясовершеннымконкурентомобъемапроизводствавкраткосрочномидолгосрочномпериод е.Предприятиевусловияхмонополии.Валовая, средняя и предельная выручка в условиях монопо лии.Оптимизациямонополистомобъемапроизводства. Эффектмасштаба. Государственноерег улированиеестественных монополий. Ценовая дискриминация. Предприятие в условия холигоп олии. Предельнаявыручкавусловияхолигополии. Лидерствовценах. Тайныйсговор. Предприят иевусловиях монополистической конкуренции. Оптимизация монополистическим конкуренто мобъемапроизводствавкраткосрочномидолгосрочномпериоде. Основныемакроэкономическ иепоказатели. Макроэкономическая нестабильность. Системанациональных счетов: основные макроэкономическиепоказатели. Методыизмерения ВВП. Номинальный иреальный ВВП. Инде ксыцен.ВВПиблагосостояние.Макроэкономическаянестабильность:безработицаиинфляция. Уровеньзанятости. Понятиеполнойзанятостииестественногоуровнябезработицы. ЗаконОукен а.Инфляцияиеевиды.Причиныиисточникиинфляции.Инфляцияспросаиинфляцияиздержек. Экономические и социальные последствия инфляции. Кривая Филипса. В заимосвязьинфляции и безработицы.

Основы конструирования машин

Трудоемкость в зачетных единицах:	4	5 семестр
Часов (всего) по учебному плану:	144 ч	5 семестр
Лекции	16 ч	5 семестр
Практические занятия	16 ч	5 семестр
Лабораторные работы	-	5 семестр
Самостоятельная работа	91,7 ч	5 семестр
Курсовой проект	72 ч	5 семестр
Зачет	0 ч	5 семестр

<u>Цель дисциплины:</u> формирование у студентов подходов к решению комплексных задач проектирования оптимальных конструкций электротехнического оборудования.

Основные разделы дисциплины: Зубчатые цилиндрические передачи. Червячные передачи. Устройство, назначение, особенности передач, применяемые материалы. Проектный и проверочный расчеты зубчатых и червячных передач. Допуски и посадки. Обозначение допусков и посадок в технической документации. Выбор посадок. Отклонения формы и расположения. Шероховатость поверхностей. Валы и оси. Конструкция. Расчет и конструирование валов. Подшипники скольжения и качения. Назначение, устройство, выбор подшипников. Планетарные и волновые передачи. Конструкция, принцип работы, особенности волновых передач, их разновидности. Муфты. Назначение и классификация муфт. Конструкции жестких, упругих, компенсирующих и предохранительных муфт. Расчет элементов муфт. Расчет резьбовых соединений. Сварные, клеевые и паяные соединения. Типы и схемы расчета различных вариантов сварных соединений. Соединение пайкой и склеиванием. Прессовые соединения. Использование прессовых соединений в конструкциях. Оценка величины натяга, необходимого для передачи нагрузки. Шпоночные и шлицевые соединения. Применение, подбор и расчет шпоночных и шлицевых соединений.

Социология

Трудоемкость в зачетных единицах:	2	4 семестр
Часов (всего) по учебному плану:	72 ч	4 семестр
Лекции	-	4 семестр
Практические занятия	16 ч	4 семестр
Лабораторные работы		
Самостоятельная работа	38 ч	4 семестр
Курсовые проекты (работы)		
Зачеты	18 ч	4 семестр

<u>Цель дисциплины:</u> формирование целостного представления об обществе на основе изучения теоретических положений социологии и анализа актуальных социальных явлений процессов и проблем.

Основные разделы дисциплины

1.История становления и развития социологии

Возникновение социологии как науки в X1X столетии. Позитивизм в социологии: закон О. Конта о трех стадиях общественного развития. Органическая социология Г. Спенсера. Общество как организм. Социология марксизма.

Социология Э. Дюркгейма. Структура социологического знания. Социология М. Вебера. Концепция «социального действия» и типология социальных действий. Западная социология XX в.

Социология в России: социологические традиции и направления. Особенности ее формирования и развития.

2.Социология как наука: теория и методология

Возникновение социологии как науки. Объект и предмет социологии. Социальное взаимодействие как основа социальных явлений. Понятие «социальное» и другие социологические категории. Функции социологической науки.

Структура социологического знания: теоретические и эмпирические методологические подходы в социологическом познании. Социологическое исследование как средство познания социальной реальности. Основные характеристики социологического исследования, его виды.

3.Общество как система.

Структура общества и его основные подсистемы. Функционалистский принцип. Детерминистский принцип. Основные признаки общества.

Понятие «социальный институт». Общество как совокупность социальных институтов. Понятие «социальная организация». Типы социальных организаций.

Общество как совокупность социальных общностей и социальных групп.

Социологический подход к личности. Определение и структура личности. Зависимость личности от общества и автономия личности. Социализация личности: формы, этапы, агенты, фазы и факторы, влияющие на формирование личности. Социальный контроль. Социальные нормы и санкции. Девиантное поведение и его формы.

Социальное неравенство и социальная стратификация.

Факторы, определяющие социальные изменения. Социальный прогресс и регресс.

Политология

Трудоемкость в зачетных единицах:	2	4 семестр
Часов (всего) по учебному плану:	72 ч	4 семестр
Лекции	-	4 семестр
Практические занятия	16 ч	4 семестр
Лабораторные работы		-
Самостоятельная работа	38 ч	4 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	4 семестр

<u>Цель дисциплины:</u> формирование целостного понимания политики и политических процессов, выработка представления о политологии как науке, формирование на этой основе собственной активной гражданской позиции.

Основные разделы дисциплины

1.Политология как наука. Институциональные основы государства

Политология как наука о политике и как интегральная наука. Российская и западная политологические традиции. Предмет, субъект и объект политической науки. Общенаучные и частные методы политологии. Форма политики. Содержание политики. Политический процесс. Прикладная политология и ее предмет. Теоретическая политология. Политические технологии как технологии политических исследований. Место политической науки в системе социально-экономических и гуманитарных знаний. Основные функции политологии. История зарубежной и отечественной политической мысли.

2. Политическая власть и властные отношения

Политическая жизнь общества. Основные политические институциональные структуры власти. Политические организации. Политические отношения и проблемы власти. Политические интересы. Структура политических отношений. Субъекты политических отношений. Содержание политической деятельности. Объем властных полномочий участников политической жизни. Политическое насилие в истории общества. Разделение власти на ветви и его суть. Особенности властной деятельности в России.

3. Политическая система современного общества

Сущность политической системы. Представительская, модернистская и постмодернистская политические системы. Структура и функции политической системы. Классификации структуры политической системы. Политические и правовые нормы. Государство как политический институт.

Сущность государства. Основные концепции происхождения государства. Соотношение государства с гражданским обществом. Характерные черты государства как политического института. Устройство современного государства и его основные функции. Форма правления и территориальное устройство государств. Правовое государство. Социальное государство. Тенденции в эволюции современных государств.

Понятие политического режима. Классификация политических режимов. Авторитаризм и его основные черты. Тоталитаризм и его типологические свойства. Демократия и ее исторические типы. Классификация современных демократий.

Политические партии и общественные движения. История образования политических партий. Партийные системы и их основные типы. Партии в России. Проблемы и перспективы многопартийности. Общественно-политические организации. Группы влияния. Типы общественных объединений.

Метрология и информационно-измерительная техника

Трудоемкость в зачетных единицах:	4	5 семестр
Часов (всего) по учебному плану:	144 ч	5 семестр
Лекции	16 ч	5 семестр
Практические занятия	-	5 семестр
Лабораторные работы	16 ч	5 семестр
Самостоятельная работа	80 ч	5 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	5 семестр

<u>Цель дисциплины:</u> изучение метрологии и электроизмерительной техники для последующего применения в практической деятельности. изучение метрологии и электроизмерительной техники для последующего применения в практической деятельности.

Основные разделы дисциплины: Общие понятия метрологии. Термины и определения. Погрешности измерений. Общая характеристика аналоговых электроизмерительных устройств. Общая характеристика цифровых электроизмерительных устройств. Измерение токов и напряжений. Измерение параметров цепей постоянного и переменного тока. Измерение мощности и энергии. Исследование формы сигналов. Измерение частоты и угла сдвига фаз.

Электрические машины

Трудоемкость в зачетных единицах:	9	5,6 семестры
Часов (всего) по учебному плану:	324 ч	5,6 семестры
Лекции	32 ч	5,6 семестры
Практические занятия		5,6 семестры
Лабораторные работы	32 ч	5,6 семестры
Самостоятельная работа	151,7 ч	5,6 семестры
Курсовой проект	72 ч	6 семестр
Экзамены	72 ч	5,6 семестры

<u>Цель дисциплины:</u> изучение конструкций, физических принципов работы, технологии изготовления, методов расчёта и проектирования, характеристик, основ использования, эксплуатации и испытания электрических машин общепромышленного применения.

Основные разделы дисциплины: Введение. Основные физические Физические законы, лежащие в основе работы электрических машин. Трансформаторы. Параллельная работа трансформаторов. Электромеханическое преобразование энергии. Обмотки машин переменного тока, ЭДС в обмотке, обмоточный коэффициент. Составляющие магнитного поля и индуктивные сопротивления обмоток. Потери и КПД. Асинхронные машины. Конструкции и принцип действия. Асинхронные машины. Конструкции и принцип действия. Параметры и их приведение. Основные уравнения, векторная диаграмма и схемы замещения асинхронных двигателей. Пуск и регулирование АД. Синхронные машины. Конструкции и принцип действия. Уравнения и параметры синхронных машин. Параметры синхронной машины в установившемся режиме. Уравнения и векторные диаграммы синхронных машин. Электромагнитный момент и угловая характеристика. Машины постоянного тока. Конструкции и принцип действия. Принцип действия и конструкции двигателя и генератора. ЭДС в обмотке якоря. Схемы и способы возбуждения машин постоянного тока. Двигатель тока. постоянного Электромагнитный момент двигателя постоянного Актуальные проблемы электромеханики и тенденции развития электрических машин.

Правоведение

Трудоемкость в зачетных единицах:	2	7 семестр
Часов (всего) по учебному плану:	72 ч	7 семестр
Лекции	-	7 семестр
Практические занятия	16 ч	7 семестр
Лабораторные работы	_	_
Самостоятельная работа	38 ч	7 семестр
Курсовые проекты (работы)	-	_
Зачет	18 ч	7 семестр

<u>Цель дисциплины:</u> формирование высокого уровня правосознания и правовой культуры, выражающегося в общественно-осознанном, социально-активном правомерном поведении, ответственности и добровольности, реализации не только личного, но и общественного интереса, способствующего утверждению в жизни принципов права и законности.

Основные разделы дисциплины

1. Сущность, принципы и функцииправа.

Право в системе социальных норм. Соотношение права и морали. Виды правовых нормПонятие и виды источников права. Система институтов и отраслей права.

Правовые отношения. Предпосылки возникновения правоотношений. Взаимосвязь норм права и правоотношений.Понятие и виды субъектов права. Правоспособность и дееспособность. Субъективные права и обязанности как юридическое содержание правоотношений.Объекты правоотношений. Классификация юридических фактов.

Правовое государство и его основные характеристики. Возникновение и развитие правового государства. Правовой статус личности: понятие, структура, виды (общий, специальный, индивидуальный). Основные права и свободы человека и гражданина.

2. Правосознание, правовая культура и правовое воспитание

Понятие правосознания. Место и роль правосознания в системе форм общественного сознания. Структура правосознания. Правовая психология и правовая идеология. Виды правосознания. Взаимодействие права и правосознания.

Понятие и структура правовой культуры общества и личности. Знание, понимание, уважение к праву, активность в правовой сфере. Правовой нигилизм и правовой идеализм. Правовое воспитание как целенаправленное формирование правовой культуры граждан.

Понятие и виды правомерного поведения. Правовая активность личности. Стимулирование правомерных действий.Понятие и признаки правонарушений. Виды правонарушений, состав правонарушения. Юридическая ответственность: понятие, признаки, виды. Презумпция невиновности.

5. Законность, правопорядок, дисциплина

Законность и целесообразность. Укрепление законности — условие формирования правового государства. Законность и произвол. Гарантии законности. Ценность и объективная необходимость правопорядка. Соотношение законности, правопорядка и демократии.

Права на результаты интеллектуальной деятельности и средства индивидуализации.

Объекты авторского права. Основы информационного права.

Общая энергетика

Трудоемкость в зачетных единицах:	3	7 семестр
Часов (всего) по учебному плану:	108 ч	7 семестр
Лекции	16 ч	7 семестр
Практические занятия	16 ч	7 семестр
Лабораторные работы	-	-
Самостоятельная работа	58 ч	7 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	6 семестр

<u>Цель дисциплины</u>: формирование знаний о видах природных источников энергии и способах преобразования их в электрическую и тепловую энергию.

Основные разделы дисциплины.

Энергоресурсы и их использование. Невозобновляемые и возобновляемые источники энергии. Основные положения технической термодинамики и теории теплообмена. Циклы основных тепловых электрических станций(ТЭЦ, КЭС, АЭС). Основное оборудование тепловых электрических станций. Системы теплоснабжения. Гидроэлектростанции, ветровая и солнечная энергетика. Электроэнергетические системы и системы электроснабжения объектов. Требования по категорийности электроснабжения. Электрические нагрузки. Выбор электрооборудования (основные положения).

Электрические и электронные аппараты

Трудоемкость в зачетных единицах:	9	5,6 семестры
Часов (всего) по учебному плану:	324 ч	5,6 семестры
Лекции	32 ч	5,6 семестры
Практические занятия	-	5,6 семестры
Лабораторные работы	32 ч	5,6 семестры
Самостоятельная работа	151,7 ч	5,6 семестры
Курсовой проект	72 ч	5 семестр
Экзамены	72 ч	5,6 семестры

<u>Цель дисциплины:</u> изучение многообразия электрических и электронных аппаратов, их функций, характеристик, процессов и явлений, связанных с их работой.

<u>Основные разделы дисциплины:</u> Электрический аппарат как средство управления режимами работы, защиты и регулирования параметров системы

Электромеханические аппараты систем распределения электрической энергии при низком напряжении

Электромеханические аппараты управления

Тепловые процессы в электрических аппаратах

Электрические контакты

Электродинамическая стойкость электрических аппаратов

Электрическая дуга и процесс коммутации

Электромагниты

Аппараты высокого напряжения

Классификация и области применения электронных аппаратов. Виды и характеристики электронных ключей

Расчет потерь в статических и динамических режимах работы электронных ключей

Системы управления электронных аппаратов. Использование пассивных компонентов в электронных аппаратах

Статические коммутационные аппараты и регуляторы постоянного тока

Статические коммутационные аппараты и регуляторы переменного тока

Теория автоматического управления

Трудоемкость в зачетных единицах:	4	6 семестр
Часов (всего) по учебному плану:	144 ч	6 семестр
Лекции	16 ч	6 семестр
Практические занятия	16 ч	6 семестр
Лабораторные работы	-	6 семестр
Самостоятельная работа	94 ч	6 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	6 семестр

<u>Цель дисциплины:</u> формирование теоретической базы по современным методам исследования систем управления, которая позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности, связанной с получением математического описания, моделированием, анализом, проектированием, испытаниями и эксплуатацией современных систем управления.

Основные разделы дисциплины: Общие понятия управления. Классификация САУ и принципы построения. Термины и определения. Математическое описание линейных САУ: дифференциальные уравнения, передаточные функции, частотные и характеристики, структурные схемы, в пространстве состояний. Устойчивость САУ, определение устойчивости критериям: Гурвица, Михайлова, ПО логарифмическому. Качество САУ, показатели, методы повышения качества. Качество САУ, показатели, методы повышения качества. Дискретные САУ, классификация, виды квантования. Математическое описание импульсных систем. Устойчивость импульсных систем. Качество импульсных систем, методы повышения качества. Анализ нелинейных систем. Описание многомерных линейных динамических систем.

Электротехнология

Трудоемкость в зачетных единицах:	3	7 семестр
Часов (всего) по учебному плану:	108 ч	7 семестр
Лекции	16 ч	7 семестр
Практические занятия		
Лабораторные работы	16 ч	
Самостоятельная работа	58 ч	7 семестр
Курсовые проекты (работы)		
Зачет	18 ч	7 семестр

<u>Цель дисциплины:</u> изучение физических принципов (механизмов) преобразования электрической энергии в тепловую, областей применения и особенностей электротехнологических установок основных типов, их характеристик как потребителей электроэнергии для применениязнаний при решении профессиональных задач.

Основные разделы дисциплины:Общие сведения об электротехнологических процессах в промышленном производстве. Преобразование электрической энергии в электротехнологических установках (ЭТУ). Классификация ЭТУ по принципу действия. Теплопередача в ЭТУ. Установки резистивного нагрева. Превращение электрической энергии в тепловую, нагрев прямой и косвенный. Электрические печи сопротивления (ЭПС), основные элементы конструкции. Виды циклов нагрева в ЭПС. Печи периодического и непрерывного действия. Тепловой расчет печи периодического действия. Уравнение теплового баланса. Мощность потребная, установленная и тепловых потерь. Особенности теплового расчета печи непрерывного действия. Электрический расчет ЭПС. Идеальная и удельная поверхностная мощность нагревателя. Конструкция нагревательных элементов ЭПС. Электроснабжение и электрооборудование ЭПС. Регулирование температуры в ЭПС, датчики температуры. Схемы электрические печей сопротивления – силовые и управления. ЭПС как потребители электроэнергии. Материалы в электропечестроении. Установки индукционного нагрева, физические основы. Эффекты электромагнитного поля. Классификация индукционных установок, области применения. Индукционные плавильные печи – тигельные и канальные. Принцип действия, основные Электроснабжение электрооборудование элементы конструкции, назначение. И индукционных установок, электрический и тепловой КПД, коэффициент мощности. Выбор питающего напряжения. Индукционные установки электроэнергии. Общие сведения о дуговом разряде. Вольтамперные характеристики дуги постоянного и переменного тока. Устойчивость дуги. Способы регулирования мощности дуги. Особенности горения дуги переменного тока. Классификация и области применения дуговых установок. Дуговые сталеплавильные печи (ДСП), руднотермические печи (РТП), дуговые вакуумные печи (ВДП). Области применения ДСП, РТП и ВДП, особенности конструкции. Электроснабжение и электрооборудование дуговых установок, дуговые печи как потребители электроэнергии. Печи электрошлакового переплава (ЭШП), механизм электрической энергии в тепловую. Особенности конструкции печей преобразования ЭШП, их назначение, особенности технологического процесса. Электроснабжение и электрооборудование печей ЭШП. Электронно-лучевые установки (ЭЛУ) и лазерные технологические установки: классификация, принцип действия, области применения.

Безопасность жизнедеятельности

Трудоемкость в зачетных единицах:	4	9 семестр
Часов (всего) по учебному плану:	144 ч	9 семестр
Лекции	16 ч	9 семестр
Практические занятия	-	
Лабораторные работы	16 ч	9 семестр
Самостоятельная работа	94 ч	9 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	9 семестр

<u>Цель дисциплины:</u> Изучение основных способов и принципов создания и поддержания безопасных условий жизнедеятельности на производстве и в быту, в том числе при возникновении чрезвычайных ситуаций

Основные разделы дисциплины:

Нормативно-правовые основы безопасности жизнедеятельности. Основные понятия и определения. Система законодательных и иных нормативных правовых актов в области безопасности жизнедеятельности. Права и обязанности работодателя и работника в области охраны труда. Органы государственного специализированного надзора за обеспечением безопасности труда и промышленной безопасности.

Электробезопасность. Действие электрического тока на организм человека. Факторы, влияющие на исход поражения человека электрическим током. Критерии безопасности электрического тока. Классификация помещений по степени опасности поражения человека электрическим током. Напряжение прикосновения и шага. Основные меры защиты от поражения человека электрическим током в электроустановках.

Оказание первой помощи пострадавшим на производстве. Правовые аспекты оказания первой помощи пострадавшим на производстве. Алгоритм действий при несчастном случае на производстве. Комплекс мероприятий по проведению сердечно-легочной реанимации. Мероприятия по остановке наружного кровотечения. Мероприятия при травмах, отравлениях и прочих состояниях, угрожающих жизни.

Виброакустика. Основные физические характеристики шума и вибраций. Измерение шума. Действие шума и вибраций на человека. Нормирование шума и вибраций. Методы борьбы с шумом и производственными вибрациями.

Производственное освещение. Основные светотехнические понятия и величины. Виды освещения. Нормирование. Показатели качества освещения. Измерение условий световой среды. Методы расчёта производственного освещения.

Электромагнитная безопасность. Нормирование воздействия электромагнитных полей. Защита от воздействия биологически активных электромагнитных полей.

Радиационная безопасность. Виды ионизирующих излучений. Основные характеристики радионуклидов. Дозиметрические величины. Эффекты радиационного воздействия на человека. Нормирование радиации. Защита от ионизирующих излучений.

Микроклимат производственных помещений. Параметры микроклимата и их измерение. Физиологическое действие метеорологических условий на человека. Гигиеническое нормирование параметров микроклимата. Мероприятия по обеспечению оптимальных и допустимых значений параметров микроклимата в помещениях.

Пожарная безопасность. Общие сведения о горении. Нормы пожарной безопасности. Способы и средства тушения пожаров. Расчет пожарного риска.

Чрезвычайные ситуации (ЧС). Общие понятия и классификация ЧС. Фазы развития ЧС. Нормативно-правовая база в области предупреждения и ликвидации ЧС. Обеспечение устойчивости функционирования объектов экономики при ЧС. Государственная экспертиза, надзор и контроль в области защиты населения и территорий от ЧС. Мониторинг и прогнозирование возникновения ЧС.

Экология

Трудоемкость в зачетных единицах:	3	8 семестр
Часов (всего) по учебному плану:	108 ч	8 семестр
Лекции	-	8 семестр
Практические занятия	16 ч	8 семестр
Лабораторные работы	-	-
Самостоятельная работа	74 ч	8 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	8 семестр

<u>Цель дисциплины:</u> изучение основных закономерностей физико-химических процессов, лежащих в основе экобиозащитной техники, формирование понимания влияния объектов профессиональной деятельности на экологическую обстановку и путей уменьшения их негативного влияния.

Основные разделы дисциплины: Очистка газовых примесей. Очистка от пыли. Сухой способ пылеулавливания (циклоны, пылеосадительные камеры, жалюзийные и ротационные пылеуловители, электрофильтры, тканевые фильтры). Мокрый способ пылеулавливания (скрубберы, аппараты Вентури, насадочные, форсуночные скрубберы, пенные аппараты). Методы очистки промышленных выбросов от газообразных загрязнений по характеру протекания физико-химических процессов: промывка выбросов растворителями примесей (абсорбция), промывка выбросов растворами, связывающими вредные вещества химически (хемосорбция), поглощение газообразных примесей твердыми активными веществами (адсорбция). Термическая нейтрализация отходящих газов (каталитическая нейтрализация). Термическое окисление, прямое сжигание.

Предварительная обработка воды. Удаление взвешенных частиц из сточных вод. Процеживание и отстаивание. Песколовки и отстойники (горизонтальные, вертикальные, радиальные, пластинчатые). Удаление всплывающих примесей. Фильтрование воды. Гидроциклоны, центрифуги. Физико-химические методы очистки (коагуляция, флокуляция, флотация, адсорбция, ионный обмен, экстракция, обратный осмос, ультрафильтрация). Химические методы очистки сточных вод (нейтрализация, окисление, восстановление). Биохимические методы очистки. Закономерности распада органических веществ. Аэротенки, биофильтры, биологические пруды. Обеззараживание сточных вод.

Обработка осадков производственных сточных вод. Уплотнение, стабилизация, обезвоживание, термическая обработка, сжигание. Вопросы проектирования станций очистки сточных вод, выбор технологической схемы очисткой станции. Сбор, удаление и обеззараживание радиоактивных отходов. Очистка почв от загрязняющих веществ (фильтрация, обработка микроорганизмами). Рекультивация земель. Механическая, механотермическая и термическая переработка твердых бытовых отходов. Физикохимическое выделение компонентов при участии жидкой фазы.

Электрический привод

Трудоемкость в зачетных единицах:	6	7 семестр
Часов (всего) по учебному плану:	216 ч	7 семестр
Лекции	16 ч	7 семестр
Практические занятия	16 ч	7 семестр
Лабораторные работы	-	7 семестр
Самостоятельная работа	148 ч	7 семестр
Курсовые проекты (работы)	-	-
Экзамен	36 ч	7 семестр

<u>Цель дисциплины</u>: овладение умением определять место эффективного применения электропривода в электротехническом объекте или технологии, выбирать оптимальную структуру электропривода и его составляющие, проводить эскизное проектирование электропривода и/или его основных элементов с учетом требований безопасности, энергоэффективности, экологии, эргономики, экономики.

Основные разделы дисциплины: Электропривод — назначение, определение, структура, состав, применение электропривода в современных технологиях. Общие требования к электроприводу Базовая модель. Уравнения механического движения. Установившийся режим (статика). Приведение параметров координат. Механические характеристики электродвигателя и нагрузки. Статическая устойчивость. Регулирование координат электропривода. Показатели регулирования.

Типы электроприводов постоянного тока. Схемы включения. Основные уравнения. Статические характеристики. Энергетические режимы. Способы регулирования координат в разомкнутых и замкнутых структурах и их показатели. Допустимая нагрузка. Технические реализации замкнутых структур регулирования (примеры).

Простые модели асинхронного электропривода Типы. Уравнения. Характеристики. Энергетические режимы. Номинальные данные. Допустимая нагрузка. Способы регулирование координат. Условия регулирования. Каскадные схемы. Привод с машинами двойного питания.

Типы синхронных приводов. Основные уравнения. Характеристики. Синхронный двигатель как компенсатор реактивной мощности. Вентильно-индукторный привод. Шаговый электропривод (принцип действия). Применение электроприводов с синхронными двигателями.

Современные управляемые выпрямители, преобразователи напряжения, преобразователи частоты - принципы построения, схемы.

Динамика электропривода без учета индуктивности обмоток двигателя при питании от сети. Уравнения, характеристики переходных процессов. Динамика электропривода без учета индуктивности обмоток двигателя в системе управляемый преобразователь—двигатель. Примеры. Уравнения и характеристики переходных процессов. Динамические режимы электропривода с учетом индуктивности обмоток двигателя. Примеры. Уравнения, характеристики переходных процессов.

Анализ динамики сложных систем электропривода. Система подчиненного регулирования с последовательной коррекцией.

Показатели энергетической эффективности. Потери мощности и энергии в установившихся и динамических режимах. Основные методы и средства энергосбережения в электроприводе и средствами электропривода.

Электроэнергетические системы и сети промышленного электроснабжения

Трудоемкость в зачетных единицах:	5	6 семестр
	5	7 семестр
	2	8 семестр
	всего – 12 з.е.	
Часов (всего) по учебному плану:	432	
Лекции	16 ч	6 семестр
	16 ч	7 семестр
	всего – 32 часа	
Практические занятия	16 ч	6 семестр
	16 ч	7 семестр
	всего - 32 часа	
Лабораторные работы	-	7 семестр
Аудиторные консультации по курсовым проектам	16 ч	8 семестр
Иные виды контактной работы	4,3 ч	8 семестр
Самостоятельная работа	80 ч	6 семестр
	88 ч	7 семестр
	51,7 ч	8 семестр
	всего – 219,7 часов	
Курсовые проекты (работы)	72 ч	8 семестр
Зачет	0 ч	6 семестр
Экзамен	36 часов	6 семестр
	36 часов	7 семестр

<u>Цель дисциплины</u>: формирование у обучающихся представления о способах и средствах передачи электрической энергии промышленным потребителям, получение обучающимися навыков расчета параметров и выбора силового оборудования электрических систем.

Основные разделы дисциплины

Электроэнергетические и электрические системы. Режимы работы электрических систем. Передача электрической энергии потребителю. Классификация электрических сетей и потребителей электрической энергии. Электрооборудование электрических систем. Схемы замещения электрических сетей. Методы расчета рабочих режимов сетей промышленного электроснабжения. Методы расчета замкнутых сетей. Определение потерь мощности и электрической энергии в элементах электрических сетей. Методы и способы регулирования напряжения в системах электроснабжения. Проектирование электрических сетей. Распределительные устройства электростанций, трансформаторных промышленных подстанций.

Приемники электрической энергии

Трудоемкость в зачетных единицах:	3	7 семестр
Часов (всего) по учебному плану:	108	7 семестр
Лекции	16 ч	7 семестр
Практические занятия	16 ч	7 семестр
Лабораторные работы	-	-
Самостоятельная работа	58 ч	7 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	7 семестр

<u>Цель дисциплины:</u> формирование у обучающихся представления об основных технологических электроустановках и вспомогательном электрооборудовании, с учетом их совместного функционирования для последующего проектирования системы их электроснабжения.

Основные разделы дисциплины.

Краткая характеристика основного технологического оборудования. Методы расчета нагрузок и нормативные документы, их регламентирующие. Присоединение потребителей к системам электроснабжения. Работа электродвигательной нагрузки в технологическом оборудовании. Электротермическое оборудование. Электроприемники коммунального хозяйства и вспомогательное оборудование.

Переходные процессы в системах электроснабжения

Трудоемкость в зачетных единицах:	5 ч	8 семестр
Часов (всего) по учебному плану:	180	8 семестр
Лекции	16 ч	8 семестр
Практические занятия	16 ч	8 семестр
Лабораторные работы	-	8 семестр
Самостоятельная работа	112 ч	8 семестр
Курсовые проекты (работы)	-	-
Экзамен	36 ч	8 семестр

<u>Цель дисциплины</u>: изучение электромагнитных и электромеханических переходных процессов в системах электроснабжения, выработка навыков их расчета для последующего использования полученных знаний при оценке аварийных и анормальных режимов при проектировании и эксплуатации питающих и распределительных сетей.

Основные разделы дисциплины.

Классификация электромеханических переходных процессов. Статическая устойчивость. Характеристики мощности простейшей системы. Динамическая устойчивость. Количественная оценка относительного движения ротора генератора. Метод площадей. Численные методы решения нелинейных дифференциальных уравнений движения роторов генераторов системы, метод последовательных интервалов. характерных режимов электродвигательной нагрузки. Пуск и групповой самозапуск электродвигателей в СЭС.

Основы электроснабжения

Трудоемкость в зачетных единицах:	5	8 семестр
Часов (всего) по учебному плану:	180 ч	8 семестр
Лекции	16 ч	8 семестр
Практические занятия	16 ч	8 семестр
Лабораторные работы	16 ч	8 семестр
Самостоятельная работа	96 ч	8 семестр
Курсовые проекты (работы)	-	-
Экзамен	36 ч	8 семестр

<u>Цель дисциплины:</u> освоение обучающимися навыков построения системы электроснабжения потребителей электроэнергии различного назначения.

Основные разделы дисциплины: Структура системы электроснабжения потребителей. Электрические нагрузки, их выбор, методы определения расчётных нагрузок. Выбор силовых трансформаторов и других элементов системы электроснабжения выше 1 кВ. Компенсация реактивной мощности, как средство воздействия на режимы электроснабжения. Особенности расчёта токов КЗ в сетях потребителей на напряжении выше 1 кВ. Показатели качества электроэнергии в соответствии с ГОСТ и способы их улучшения. Экономичность и безопасность в сетях потребителей.

Монтаж и наладка электрооборудования

Трудоемкость в зачетных единицах:	5	8 семестр
Часов (всего) по учебному плану:	180 ч	8 семестр
Лекции	16 ч	8 семестр
Практические занятия	-	8 семестр
Лабораторные работы	16 ч	8 семестр
Самостоятельная работа	112 ч	8 семестр
Курсовые проекты (работы)	-	-
Экзамен	36 ч	8 семестр

<u>Цель дисциплины</u>: подготовка специалиста личностных качеств и профессиональных компетенций, готового к выполнению производственно-технологической, организационно-управленческой и конструкторско-технологической деятельности по монтажу, наладке и ремонту электрооборудования.

<u>Основные разделы дисциплины:</u> Монтаж электрооборудования СЭС. Наладка электрооборудования СЭС.

Микропроцессорные средства в электроснабжении

Трудоемкость в зачетных единицах:	3	8 семестр
Часов (всего) по учебному плану:	108 ч	8 семестр
Лекции	16 ч	8 семестр
Практические занятия	-	8 семестр
Лабораторные работы	16 ч	8 семестр
Самостоятельная работа	58 ч	8 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	8 семестр

<u>Цель дисциплины:</u> изучение принципов разработки и применения микропроцессорных устройств для реализации релейной защиты и автоматики для последующего использования при проектированиии эксплуатации систем электроснабжения объектов.

Основные разделы дисциплины

Организация устройств ввода/вывода микропроцессорных систем. Понятие о вычислительных сетях, характеристики каналов и интерфейсов. Устройства связи с объектом. Устройства сбора и выдачи аналоговых и дискретных сигналов. Аналогоцифровое преобразование сигналов. Принцип действия и характеристики аналогоцифровых преобразователей различных типов. Погрешность аналого-цифрового преобразования. Цифроаналоговое преобразование. Учет знака при преобразовании.

Понятие визуализации технологического процесса. SCADA-системы. Информационные и управляющие системы. Цифровые и дискретные схемы сравнения величин. Измерительные реле полупроводниковой электрических на основе элементной базы. Измерительные одной неинтегральной органы c воздействующими электрическими величинами: принцип действия, схемы, примеры промышленного исполнения, достоинства и недостатки таких реле. Измерительные органы на основе аналоговых интегральных микросхем. Реле с одной и двумя воздействующими электрическими величинами: схемы, промышленные серии таких реле. Вторичные измерительные преобразователимеждуфазных напряжений и разности фазных токов в цифровые дискретные мгновенные значения. Структурная схема вычислений сравниваемых величин и условия срабатывания измерительных реле. Функциональная схема релейной защиты на микропроцессорах. Структурная схема. Назначение блоков схемы: промежуточных трансформаторов тока инапряжения, частотных фильтров, аналогоцифровых преобразователей (АЦП), цифро-аналоговых преобразователей и др. Принцип действия АЦП. Основные части микропроцессора, его структура. Структурная схема и основные ее составляющие. Внешние устройства системы и их назначение. Перечень непрерывных действий основной программы микропроцессорной системы в режиме реального времени. Комплектные микропроцессорные устройства для релейной защиты.

Электроснабжение потребителей и режимы

Трудоемкость в зачетных единицах:	5	9 семестр
Часов (всего) по учебному плану:	180	9 семестр
Лекции	16	9 семестр
Практические занятия	16	9 семестр
Лабораторные работы	-	-
Аудиторные консультации по курсовым проектам	16 ч	9 семестр
Иные виды контактной работы	4,3 ч	9 семестр
Самостоятельная работа	91,7	9 семестр
Курсовые проекты (работы)	72 ч	9 семестр
Экзамены	36 ч	9 семестр

<u>Цель дисциплины</u>: изучение системы электроснабжения потребителей для освоения навыков проектирования, эксплуатации и научного анализа системы в целом и её фрагментов.

Основные разделы дисциплины.

Сети потребителей на напряжение ниже 1 кВ. Выбор низковольтного оборудования. Специфика компенсации реактивной мощности и расчёта токов КЗ в сетях на напряжение ниже 1 кВ. Экономия электроэнергии в сетях потребителей. Конструктивные решения элементов системы электроснабжения потребителей. Технико-экономические расчёты при проектировании систем электроснабжения. Особенности проектирования осветительных и троллейных сетей. Оптимизационные решения в системах электроснабжения потребителей.

Эксплуатация и ремонт электрооборудования

Трудоемкость в зачетных единицах:	4	9 семестр
Часов (всего) по учебному плану:	144 ч	9 семестр
Лекции	16 ч	9 семестр
Практические занятия	16 ч	9 семестр
Лабораторные работы	-	9 семестр
Самостоятельная работа	76 ч	9 семестр
Курсовые проекты (работы)	-	-
Экзамены	36 ч	9 семестр

<u>Цель дисциплины</u>: выработка у обучающихся личностных качеств и профессиональных компетенций для организационно-управленческой и сервисно-эксплуатационной деятельности по эксплуатации электрооборудования.

Основные разделы дисциплины.

Эксплуатация электрооборудования систем электроонабжения (СЭС). Ремонт электрооборудования СЭС. Техническое обслуживание электрооборудования СЭС.

Основы релейной защиты и автоматики

Трудоемкость в зачетных единицах:	3	9 семестр
Часов (всего) по учебному плану:	108	9 семестр
Лекции	16	9 семестр
Практические занятия	-	-
Лабораторные работы	16	9 семестр
Самостоятельная работа	40	9 семестр
Курсовые проекты (работы)	-	-
Экзамены	36 ч	9 семестр

<u>Цель дисциплины:</u> изучение основ релейной защиты и автоматики для использования при проектировании и эксплуатации систем электроснабжения объектов.

Основные разделы дисциплины.

Назначение релейной защиты и автоматики систем электроснабжения. Элементная база. Принципы построения измерительных и логических органов релейной защиты. Источники и схемы оперативного тока. Измерительные трансформаторы — датчики сигналов для релейной защиты. Фильтры симметричных составляющих. Принципы действия токовых релейных защит и автоматики.

Инженерный эксперимент в электроснабжении

Трудоемкость в зачетных единицах:	2	8 семестр
Часов (всего) по учебному плану:	72	8 семестр
Лекции	-	8 семестр
Практические занятия	-	-
Лабораторные работы	16	8 семестр
Самостоятельная работа	38	8 семестр
Курсовые проекты (работы)	-	-
Зачет	18 ч	8 семестр

<u>Цель дисциплины:</u> изучение основ экспериментальных исследований и формирование навыков математической обработки результатов эксперимента применительно к задачам систем электроснабжения.

Основные разделы дисциплины.

Постановка эксперимента. Применение положений математической статистики при обработке результатов эксперимента. Статистические критерии и их применение. Основы регрессионного анализа. Основы планирования эксперимента.