НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

«УТВЕРЖДАЮ»

Проректор по научной работе

Speces

Драгунов В.К.

«16» шыня

2015 г.

Программа аспирантуры

Направление 04.06.01. Химические науки

Направленность (специальность) 02.00.05 Электрохимия

РАБОЧАЯ ПРОГРАММА

дисциплины по выбору

«Спецглавы физической химии»

Индекс дисциплины по учебному плану: Б1.В.ДВ.1.1

Всего: 108 часов

Семестр 1, в том числе

6 часов – контактная работа,

84 часов – самостоятельная работа,

18 часов - контроль

Программа составлена на основе федерального государственного образовательного стандарта высшего образования ПО направлению 04.06.01. Химические подготовки науки, утвержденного приказом Минобрнауки России от 30.07.2014 г. № _869 и 02.00.05 Электрохимия, специальности номенклатуры специальностей научных работников, утвержденной приказом Минобрнауки России от 25 февраля 2009 г. № 59.

ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью дисциплины является изучение специальных разделов физической химии, относящихся к электрохимическим процессам последующего применения полученных знаний энергетике ДЛЯ разработке технологии создания конструкционных материалов в химических преобразователях энергии.

Задачами дисциплины являются:

- познакомить обучающихся с физико-химическими основами функционирования химических источников тока и электролизеров, с их классификацией;
- познакомить обучающихся с термодинамическими и кинетическими закономерностями работы химических преобразователей энергии;
- познакомить обучающихся с физико-химическими принципами технологии изготовления функциональных и конструкционных материалов для химических преобразователей энергии;
- научить создавать новые электрохимические системы с повышенной энергетической эффективностью;
- научить производить расчеты и эскизное проектирование новых химических преобразователей энергии.

В процессе освоения дисциплины формируются следующие компетенции:

- готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научнообразовательных задач (УК-3)
- способность следовать этическим нормам в профессиональной деятельности (УК-5)
- готовность организовать работу исследовательского коллектива в области химии и смежных наук (ОПК-2)
- владеть информацией о новейших достижениях электрохимической и водородной энергетики (ПК-1)
- -владеть современными и перспективными компьютерными и информационными технологиями (ПК-4)
- -знать наноматериалы, применяемые в технологиях создания химических преобразователей энергии, их назначение и характеристики (ПК-6)

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

знать:

- современные и перспективные пути решения проблем усовершенствования существующих и разработки новых перспективных химических преобразователей энергии (ПК-1);
- принципы работы химических преобразователей энергии (ПК-1)
 наноматериалы, применяемые в технологиях создания химических преобразователей энергии, их назначение и функциональные характеристики (ПК-6)

уметь:

- следовать этическим нормам в профессиональной деятельности (УК-5)
- организовать работу исследовательского коллектива в области физической химии (ОПК-2)

- участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (УК-3) **владеть:**

- информацией о новейших достижениях в области химических преобразователей энергии (ПК-1);
- современными и перспективными компьютерными и информационными технологиями (ПК-4);

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

1.Строение вещества

Основные принципы квантовой механики для описания электронного строение атомов и молекул. Уравнения Шредингера и Дирака. Метод молекулярных орбиталей и его применение к двухатомным молекулам. Молекулярный ион водорода и молекула водорода. Молекулярные орбитали гомоядерных двухатомных молекул. Гетероядерные двухатомные молекулы. Правило пересечения потенциальных кривых. Электронное строение координационных соединений. Комплексы со слабой и сильной связью. Межмолекулярное взаимодействие. Силы Ван-дер-Ваальса. Строение и свойства твердого тела. Природа сил взаимодействия в кристаллах. Электрон в периодическом поле. Колебания и волны в одномерной решетке. Колебания атомов трехмерной кристаллической решетки. Нормальные колебания. Основы физико-химических методов исследования строения вещества.

2.Динамика атомов и молекул

Химическая термодинамика и равновесие. Равновесное распределение молекул идеального газа. Распределение Максвелла и распределение Больцмана. Распределение Бозе и Ферми. Статистика Гиббса. Термодисвойства газов. идеальных Флуктуации. Гетерогенные намические равновесия. Химический потенциал. Уравнение Клапейрона-Клаузиуса. Фазовые диаграммы. Поверхностные явления. Диффузия, законы Фика. Механизм активации молекул. Обмен энергии при молекулярных столкновениях. Превращение поступательной, вращательной и колебательной энергий при столкновениях. Релаксация по поступательным, вращательным и колебательным степеням свободы. Расчет химических равновесий. Физико-химические особенности термодинамики электрохимических процессов.

3.Основы химической кинетики

Механизм и скорость химических процессов. Закон действующих масс. Порядок реакции. Кинетические уравнения. Закон Аррениуса. Кинетика сложных реакций. Обратимые, последовательные, параллельные процессы. Прямая обратная кинетическая задача. Метод квазистационарных Кинетика концентраций. химических реакций В открытых Стационарные режимы. Гетерогенный катализ. Бифункциональный катализ. Анодные и катодные катализаторы для химических преобразователей энергии. Равновесие и кинетика адсорбции на однородных и неоднородных поверхностях. Изотермы адсорбции Лэнгмюра, Фрейндлиха, Темкина. Хемосорбция. Моно- и полимолекулярные слои адсорбатов на поверхности. Ингибирование и конкуренция реакций на поверхности. Основные стадии гетерогенного катализа. Механизмы Лэнгмюра-Хиншельвуда и Или-Ридила. Лимитирующая стадия сложного химического процесса. Особенности кинетики электрохимических процессов.

4.Основы синергетики

Проблема порядка и беспорядка в структуре материи. Динамический хаос. Проблема необратимости. Диссипативные динамические системы. Принципы самоорганизации при критических явлениях И фазовых переходах. Детерминированность выбора аттрактора. Физический смысл бифуркации. Теория фазовых переходов первого и второго рода. Теория Ландау. Флуктуационная фазовых Гипотеза подобия. теория переходов. Скейлинговая теория критических показателей. Неравновесные фазовые переходы. Вынужденный порядок в открытых физических системах. Баланс энергии диссипативных Влияние В структурах. структурных, термодинамических технологических факторов И на кинетику электрохимических процессов в мембранно-электродных блоках химических преобразователей энергии. Современные технологии, в том числе, нанотехнологии производства функциональных и конструкционных материалов для химических преобразователей энергии.

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБРАЗОВАНИЯ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по итогам освоения дисциплины: 1 семестр — дифференцированный зачет.

Вопросы для самоконтроля и для проведения зачета

- 1. Рассмотреть возможность образования молекулярных частиц H_2 и H_2^+ , O_2 и O_2^- по методу МО. Постройте энергетические диаграммы молекулярных орбиталей, определите порядок связи в молекулах.
- 2. Рассмотреть возможность образования молекулярных частиц Li_2 , C_2 и Li_2 С по методу МО. Постройте энергетические диаграммы молекулярных орбиталей, определите порядок связи в молекулах.
- 3. Каким образом на основании метода МО ЛКАО можно объяснить большую величину дипольного момента молекулы НО и малую величину дипольного момента молекулы СО?
- 4. Как объяснить с точки зрения электронной оболочки атома платины, что платиновые катализаторы ускоряют многие химические (и, особенно, электрохимические) процессы, хотя платина является инертным металлом?
- 5. Каким уравнением выражается связь изменения энергии Гиббса токообразующей реакции, протекающей в источнике тока, и ЭДС?
- 6. В чем состоит принципиальное отличие работы топливного элемента от работы тепловой машины? Дайте определение термодинамического коэффициента полезного действия топливного элемента.
- 7. От каких факторов зависит величина химического и электрохимического потенциалов?
 - 8. Дайте характеристику диффузионных явлений, происходящих в

химических источниках тока в соответствии с законами А. Фика.

- 9. Что понимают под внешнедиффузионной и внутридиффузионной областью каталитической реакции в химических источниках тока? Какое влияние и почему оказывает катализатор на скорость электрохимических реакций? Каков механизм участия в химическом процессе катализаторов?
 - 10. В чем состоит основное отличие сложных реакций от простых?
 - 11. Что подразумевают под лимитирующей стадией сложной реакции?
- 12. Как проявляется свойство селективности катализатора на примере параллельных реакций?
- 13. В чем заключаются отличия ассоциативного и стадийного механизмов катализа?
 - 14. Каковы основные особенности электрокаталитических процессов?
- 15. В чем заключаются основные отличия физической и химической адсорбции?
- 16. В чем состоят особенности процесса адсорбции в случае наноструктурированного состояния адсорбата?
- 17. Каково влияние структурных факторов на кинетику электрохимических процессов в мембранно-электродных блоках?
- 18. В чем заключаются особенности физических и химических методов формирования каталитических слоев в мембранно-электродных блоках?
- 19. Каковы основные принципы составления энергетических балансов в диссипативных структурах на примере химических преобразователей энергии?
- 20. Перечислите основные квантово-механические принципы описания электронного строение атомов и молекул. Уравнения Шредингера и Дирака.

Критерии оценки за освоение дисциплины определены в Инструктивном письме И-23 от 14 мая 2012 г.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература:

- Яштулов Н.А. Химия и энергетика. Физическая химия: катализ, адсорбция, диффузия». Учебное пособие. М.: Издательский дом МЭИ, 2013. – 48 с.
- 2. Яштулов Н.А. Кулешов Н.В. Химия и энергетика. Физическая химия: термодинамические потенциалы, кинетика сложных реакций». Учебное пособие. М.: Издательский дом МЭИ, 2013. 48 с.
- 3. Суздалев И.П. Нанотехнология. М.: Изд-во «КомКнига». 2006. 592 с.

Дополнительная литература:

- 4. Мир материалов и технологий. Сборник под редакцией. П.П.Мальцева. М.: Техносфера, 2006.—152 с.
- 5. Мэтьюз Ф., Ролингс Р. Композитные материалы. М.: Техносфера, 2004. 408 с.
- 6. Смирнов С.Е., Пуцылов И.А. Теоретическая электрохимия. Лабораторный практикум. М.: Издательский дом МЭИ, 2010.- 26 с.5