НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

«УТВЕРЖДАЮ»

Проректор по научной работе

Sacres 5

Драгунов В.К.

«16» resoure

2015 г.

Программа аспирантуры

Направление <u>04.06.01</u>. <u>Химические науки</u> Направленность (специальность) <u>02.00.05</u> Электрохимия

РАБОЧАЯ ПРОГРАММА

дисциплины по выбору «Первичные элементы»

Индекс дисциплины по учебному плану: Б1.В.ДВ.2.1

Всего: 108 часов

Семестр 3, в том числе

6 часов – контактная работа,

84 часов – самостоятельная работа,

18 часов - контроль

Программа составлена на основе федерального государственного образовательного стандарта высшего образования ПО направлению 04.06.01. Химические подготовки науки, утвержденного приказом Минобрнауки России от 30.07.2014 г. № _869 и 02.00.05 Электрохимия, паспорта специальности номенклатуры специальностей научных работников, утвержденной приказом Минобрнауки России от 25 февраля 2009 г. № 59.

ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью дисциплины является изучение теории процессов, протекающих в первичных элементах для последующего использования при разработке технологии их производства и улучшении параметров .

Задачами дисциплины являются

смежных наук (ОПК-2)

- познакомить обучающихся с принципами функционирования первичных элементов, с их классификацией;
- познакомить обучающихся закономерностями работы первичных источников тока;
- познакомить обучающихся с основами конструкции и технологии изготовления различных первичных элементов с использованием последних достижений;
- научить создавать новые электрохимические системы первичных элементов,
- научить производить расчеты и эскизное проектирование новых систем первичных элементов.

В процессе освоения дисциплины формируются следующие компетенции:

- готовность использовать современные методы и технологии научной коммуникации на государственном и иностранном языках (УК-4)
- способность планировать и решать задачи собственного профессионального и личностного развития (УК-6) организовать работу исследовательского коллектива в области химии и

- владеть информацией о новейших достижениях электрохимической и водородной энергетики (ПК-1)
- разрабатывать и исследовать электрохимические системы нового поколения
 (ПК-3)
- -владеть современными и перспективными компьютерными и информационными технологиями (ПК-4)
- -владеть технологиями создания электродных материалов и электролитов (ПК-5)
- знать наноматериалы, применяемые в технологиях создания первичных элементов, их назначение и характеристики (ПК-6).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

знать:

- современные и перспективные пути решения проблем усовершенствования существующих и разработки новых первичных элементов (ПК-1);
- наноматериалы, применяемые в технологиях создания первичных элементов, их назначение и характеристики (ПК-6)
- принципы работы первичных элементов (ПК-1);

уметь:

- использовать современные методы и технологии научной коммуникации на государственном и иностранном языках (УК-4);
- разрабатывать и исследовать электрохимические системы нового поколения первичных элементов (ПК-3)
- организовать работу исследовательского коллектива в области первичных элементов (ОПК-2);

владеть:

• информацией о новейших достижениях в области первичных источников тока (ПК-1);

- способностью планировать и решать задачи собственного профессионального и личностного развития (УК-6)
- современными и перспективными компьютерными и информационными технологиями (ПК-4);
- технологиями создания электродных материалов и электролитов (ПК-5)

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

1.Место химических источников тока в энергетике

Определение. Основные понятия. Электрохимические системы. Конструктивные разновидности химических источников тока. Основные характеристики химических источников тока. Электрические характеристики первичных элементов. Эксплуатационные характеристики. Сравнительные характеристики.

2.Электролиты первичных элементов

Водные растворы электролитов. Щелочные, солевые электролиты. Сепараторы. Ингибиторы коррозии. Неводные растворы электролитов. Растворители и соли. Полимеры. Гель - полимерные электролиты.

3.Электродные процессы

Электродные потенциалы и типы электродов. Материалы, применяемые при изготовлении электродов первичных ХИТ. Сплошные и дисперсные материалы. Пористые системы в химических источниках тока. Макрокинетика пористых электродов.

4.Первичные элементы с водным электролитом

Элементы с цинковым анодом и щелочным электролитом. Электрические и эксплуатационные характеристики марганцево- цинковых и ртутноцинковых. Воздушно-металлические источники тока. Резервные источники тока. Наливные источники тока. Тепловые источники тока.

5.Литиевые первичные элементы

Типы первичных литиевых XИТ. Основные характеристики и параметры. Требования к активным материалам электродов, электролитам и растворителям. Влияние различных факторов на функционирование катода и анода. Основные проблемы батарей первичных элементов и пути их решения. Взрывопожаробезопастность. Новые катодные материалы. Современные технологии производства первичных элементов.

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБРАЗОВАНИЯ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по итогам освоения дисциплины: 3 семестр — дифференцированный зачет.

Вопросы для самоконтроля и для проведения зачета

- 1. Какие основные виды режимов разряда первичного элемента вы знаете?
- 2. Что такое величина емкости элемента и от каких факторов она зависит?
- 3. Какова особенность определения вольт- амперной характеристики первичного элемента по сравнению с топливным элементом и аккумулятором?
- 4. Какие стадии анодного и катодного процессов могут быть лимитирующими?
- 5. Каковы основные токообразующие процессы, протекающие на электродах?
- 6. Каковы причины, обусловливающие различие вольт- амперных характеристик первичного элемента при различных температурах?
- 7. Какие основные виды режима разряда элемента вы знаете?
- 8. Как влияют различные факторы на величину внутреннего сопротивления первичного элемента?
- 9. Каковы причины, обусловливающие различие поляризационных характеристик анода при различных температурах?
- 10.Как изменяется величина электроэнергии, отдаваемая во внешнюю цепь, с уменьшением сопротивления нагрузки?
 - 11. Основные характеристики химических источников тока.
- 12. Водные растворы электролитов.
- 13. Неводные растворы электролитов.
- 14. Полимеры. Гель полимерные электролиты.
- 15. Электродные потенциалы и типы электродов.

- 16. Воздушно-металлические источники тока.
- 17. Типы первичных литиевых ХИТ. Основные характеристики и параметры.
- 18. Современные технологии первичных элементов.

Критерии оценки за освоение дисциплины определены в Инструктивном письме И-23 от 14 мая 2012 г.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература:

- 1. Смирнов С.Е. Полимерные электролиты литиевых источников тока. Москва. Изд-во «Компания Спутник+».2007.64 с.
- 2.Смирнов С.Е., Пуцылов И.А., Смирнов С.С. Твердофазные литиевые источники тока. Москва. Изд-во «Компания Спутник+».2010. 77 с.

Дополнительная литература:

3. Скундин А.М., Воронков Г.Я. Химические источники тока: 210 лет. Изд-во «Поколение».2010.352 с.