НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

«УТВЕРЖДАЮ».
Проректор по научной работе
Драгунов В.К.
16 » шоня

Программа аспирантуры

Направление 13.06.01 Электро- и теплотехника

Направленность (специальность) <u>05.09.01 Электромеханика и электрические аппараты</u>

РАБОЧАЯ ПРОГРАММА дисциплины по выбору

«Надежность электромеханических систем»

Индекс дисциплины по учебному плану: Б1.В.ДВ.4.2 Всего 108 часов

Семестр 7, в том числе

6 часов – контактная работа,

84 часов – самостоятельная работа,

18 часов - контроль

Программа составлена на основе федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации) по направлению подготовки 13.06.01 Электро- и теплотехника, утвержденного приказом министерства образования и науки РФ от 30 июля 2014 № 878, и паспорта специальности 05.09.01 Электромеханика и электрические аппараты, номенклатуры специальностей научных работников, утвержденной приказом Минобрнауки России от 25 февраля 2009 г. № 59.

ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью изучения дисциплины является изучение методов расчёта надёжности электрических машин.

Задачами дисциплины являются:

- изучение методов определения надежности элементов
 электромеханических систем;
- ознакомление с методами экспериментальной оценки надежности электрических машин;
- изучение методов обеспечения надежности электрических машин при изготовлении и эксплуатации.

В процессе освоения дисциплины формируются следующие компетенции:

- владение методологией теоретических и экспериментальных исследований в области профессиональной деятельности (ОПК-1);
- готовность осуществлять структурный и параметрический синтез алгоритмов эффективного управления электрическими и электронными аппаратов их оптимизацию и разработку систем управления (ПК-1).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

знать:

- основные математические закономерности, качественные и количественные характеристики и области применения теории надёжностий (ПК-1);
- методы расчёта надёжности узлов и деталей, применяемых в конструкциях электрических машин и аппаратов (ОПК-1);

уметь:

- применять теорию надёжности в профессиональной деятельности
 (ОПК-1);
- применять теорию и методы расчёта надёжности узлов и деталей в профессиональной деятельности (ПК-1);

владеть:

- методологией теоретических и экспериментальных исследований в области надёжности электромеханических систем (ОПК-1);
- владение методами математического и физического моделирования электрических машин и аппаратов (ПК-1).

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

Основные понятия моделирования технических систем.

Проблема надежности в электромеханике

Современная концепция надежности электрических машин и электромеханических систем. Возникновение проблемы и пути ее решения. Причины повышения требований к надежности технических изделий. Общие аспекты обеспечения и повышения надежности.

Элементы теории вероятностей. Теоремы теории вероятностей: сложения, умножения, полной вероятности, Бейеса. Повторение испытаний. Законы распределения. Числовые характеристики случайных величин. Законы распределения дискретных величин: биноминальный, Пуассона, гипергеометрический. Нормальный закон и его технические приложения. Законы распределения непрерывных величин: равномерный,

логарифмически-нормальный, экспоненциальный, Вейбулла. Элементы теории математической статистики. Генеральная совокупность и выборка. Точечные и интервальные оценки. Метод наименьших квадратов. Корреляция. Проверка статистических гипотез.

Общие вопросы надежности электромеханических систем

Основные Показатели понятия И термины. надежности жизни"). невосстанавливаемых изделий. Периоды работы ("кривая Построение гистограмм и кумулятивных кривых. Метод "слабых звеньев". Структурная надежность электромеханических систем. Анализ сложных систем. Проектирование систем с учетом надежности. Законы распределения отказов элементов и систем.

Надежность машин постоянного тока, асинхронных и синхронных машин

Надежность асинхронных машин.

Анализ объекта исследования. Статистика отказов и анализ повреждаемости. Надежность обмоток. Основы расчета долговечности изоляции. Факторы, влияющие на долговечности изоляции. Модель "слабейшего звена". Законы распределения приложенного напряжения и диэлектрической прочности изоляции обмоток. Математические модели надежности обмоток. Расчет надежности.

Надежность машин постоянного тока.

Анализ объекта исследования. Статистика отказов и анализ повреждаемости. Надежность коллекторно-щеточного узла. Физика отказов. Критерии работоспособности и критерии отказов. Математические модели надежности обмоток. Расчет надежности коллекторно-щеточного узла с целым и дробным коэффициентом резервирования. Оценка долговечности обмоток.

Надежность синхронных машин.

Анализ объекта исследования. Особенность получения статистических данных об отказах синхронных машин. "Кривая жизни". Повреждения основных узлов синхронных машин.

Надежность элементов электромеханических систем

Надежность механических узлов. Надежность подшипниковых узлов. Законы распределения отказов. Физика отказов. Критерии работоспособности и критерии отказов. Вибрация. Расчет надежности подшипниковых узлов. Прочностная и усталостная надежность.

Надежность элементов пускорегулирующей и электронной аппаратуры. Схемные решения обеспечения и повышения надежности электромеханических систем.

Расчет надежности сложных электромеханических систем, включающих электрические машины, пускорегулирующую аппаратуру, электронные блоки и механические узлы.

Методы экспериментальной оценки надежности

Общая схема. Определительные испытания на надежность. Контрольные испытания на надежность. Метод последовательного анализа. Ускоренные испытания: определение коэффициента ускорения, факторы форсировки, планирование испытаний, интерпретация результатов. Испытательное оборудование. Статистическая обработка данных эксплуатации и оценка законов распределения отказов. Выделение наиболее информативных показателей. Диагностика и прогнозирование надежности.

Обеспечение надежности электрических машин при изготовлении и эксплуатации

Входной контроль. Контроль технологического процесса обмотки и пропитки, контроль размеров деталей. Системы управления надежностью.

Эксплутационная надежность. Защита электрических машин от аварийных и аномальных режимов работы. Проблема диагностики при эксплуатации. Математические модели эксплутационной надежности электрических машин. Планирование эксперимента при решении задач надежности электромеханических систем. Планы активного эксперимента: полный факторный эксперимент, дробный факторный эксперимент. Изменение геометрии гиперпространства. Ортогональное и рототабельное планирование второго порядка. Решение задач анализа и синтеза параметров. Отсеивающие эксперименты: метод «случайного баланса» и насыщенные планы. Методы экстремума. Технические методы реализации эксперимента. Планирование, проведение и обработка результатов испытаний в условиях ограниченного объема эксперимента. Физические и математические модели.

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБРАЗОВАНИЯ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по итогам освоения дисциплины:

7 семестр – дифференцированный зачет

Вопросы для самоконтроля и проведения зачета

- 1. В чем состоит современная концепция надежности электрических машин и электромеханических систем?
- 2. Какие вы знаете показатели надежности невосстанавливаемых изделий?
- 3. Какие методы существуют для расчёта надежность обмоток электрических машин?
- 4. Какие математические модели применяются для расчёта надежности узлов и деталей электрических машин?
- 5. Как оценить надёжность коллекторно-щеточного узла машины постоянного тока?
- 6. Методы оценки долговечности обмоток электрических машин.
- 7. Что такое "Кривая жизни" изделия?
- 8. Надежность механических узлов и деталей механизмов и машин.

- 9. Надежность подшипниковых узлов.
- 10.Как проводится расчет надежности сложных электромеханических систем?
- 11. В чём заключается метод последовательного анализа надёжности узлов.
- 12. Как проводится диагностика и прогнозирование надежности?
- 13. Как проводится диагностика и прогнозирование надежности?
- 14. Что такое системы управления надежностью?
- 15. В чем заключается планирование эксперимента при решении задач надежности электромеханических систем?
- 16. Как проводится планирование, проведение и обработка результатов испытаний надёжности в условиях ограниченного объема эксперимента?
- 17. Современная концепция надежности электрических машин и электромеханических систем.
- 18. Теоремы теории вероятностей: сложения, умножения, полной вероятности, Бейеса.
- 19. Законы распределения непрерывных величин: равномерный, логарифмически-нормальный, экспоненциальный, Вейбулла.
 - 20. Показатели надежности невосстанавливаемых изделий.
 - 21. Структурная надежность электромеханических систем.
 - 22. Надежность обмоток. Основы расчета долговечности изоляции.
 - 23. Математические модели надежности обмоток. Расчет надежности.
 - 24.. Надежность коллекторно-щеточного узла машин постоянного тока..
- 25. Надёжность синхронных машин. "Кривая жизни". Повреждения основных узлов синхронных машин.
 - 26. Надежность механических узлов. Законы распределения отказов.

- 27. Расчет надежности подшипниковых узлов. Прочностная и усталостная надежность.
- 28. Надежность элементов пускорегулирующей и электронной аппаратуры.
- 29. Расчет надежности сложных электромеханических систем, включающих электрические машины, пускорегулирующую аппаратуру, электронные блоки и механические узлы.
- 30. Определительные испытания на надежность. Контрольные испытания на надежность.
- 31. Ускоренные испытания: определение коэффициента ускорения, факторы форсировки, планирование испытаний, интерпретация результатов.
 - 32. Диагностика и прогнозирование надежности.
- 33. Контроль технологического процесса обмотки и пропитки, контроль размеров деталей. 18. Системы управления надежностью.
- 34. Эксплутационная надежность. Защита электрических машин от аварийных и аномальных режимов работы.
- 35. Математические модели эксплутационной надежности электрических машин.
- 36. Планирование эксперимента при решении задач надежности электромеханических систем.
- 37.Планирование, проведение и обработка результатов испытаний в условиях ограниченного объема эксперимента. Физические и математические модели.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература:

- 1. Надежность электрических машин : учебное пособие для вузов по специальности 140601 "Электромеханика" направления 140600 "Электротехника, электромеханика и электротехнологии" / Н. Л. Кузнецов . М. : Изд. дом МЭИ, 2006 . 432 с.
- 2. Гольдберг О.Д., Хелемская С. Надежность электрических машин: М: Академия, 2010, 288 с.

Дополнительная литература:

- 3. Сборник задач по надежности электрических машин : учебное пособие для вузов по специальности 140601 "Электромеханика" направления 140600 "Электротехника, электромеханика и электротехнологии" / Н. Л. Кузнецов . М. : Изд. дом МЭИ, 2008 . 408 с.
- 4. Котеленец Н.Ф., Кузнецов Н.Л. Испытания и надежность электрических машин. М.: Высшая школа, 1988. 232 с.