НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

«УТВЕРЖДАЮ»

Проректор по научной работе

Драгунов В.К.

«16» WOHE

2015 г.

Программа аспирантуры

Направление 22.06.01 Технологии материалов

Направленность (специальность) 05.16.09 Материаловедение (по отраслям)

РАБОЧАЯ ПРОГРАММА

дисциплины по выбору

«ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ»

Индекс дисциплины по учебному плану: Б1.В.ДВ.1.2

Всего: 108 часов

Семестр 1, в том числе

6 часов - консультация,

84 часов – самостоятельная работа,

18 часов – контроль

Программа составлена на основе федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации) по направлению подготовки 22.06.01 «Технологии материалов», утвержденного приказом Минобрнауки России от 30 июля 2014 № 888, и паспорта специальности, указанной в номенклатуре специальностей научных работников 05.16.09 «Материаловедение (по отраслям)», утвержденной приказом Минобрнауки России от 25 февраля 2009 г. № 59.

ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью изучения дисциплины является изучение состава и строения электротехнических материалов, а также его влияния на технологические и эксплутационные свойства.

Задачами дисциплины являются:

- ознакомление с особенностями строения электротехнических материалов;
- умение проводить анализ фазовых превращений, происходящих в электротехнических и их влияния на технологические и эксплутационные свойства;
- знание информацию о проводниковых, полупроводниковых, диэлектрических, магнитных и композиционных материалах.

В процессе освоения дисциплины формируются следующие компетенции:

- способностью и готовностью использовать на практике интегрированные знания естественнонаучных, общих профессионально-ориентирующих и специальных дисциплин для понимания проблем развития материаловедения, умение выдвигать и реализовывать на практике новые высокоэффективные технологии (ОПК-5);
- способностью и готовностью участвовать в проведении технологических экспериментов, осуществлять технологический контроль при производстве материалов и изделий (ОПК-12);
- способностью понимать физические и химические процессы, протекающие в материалах при их получении, обработке и модификации; использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств материалов (ПК-13);
- способностью самостоятельно использовать технические средства для измерения и контроля основных параметров технологических процессов, структуры и свойств материалов и изделий из них (ПК-14).

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

знать:

- физические и химические процессы, протекающие в материалах при их получении, обработке и модификации (ПК-13).

уметь:

- использовать на практике интегрированные знания естественнонаучных, общих профессионально-ориентирующих и специальных дисциплин для понимания проблем развития материаловедения, умение выдвигать и реализовывать на практике новые высокоэффективные технологии (ОПК-5);
- использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств материалов (ПК-1);
- проводить технологических экспериментов, осуществлять технологический контроль при производстве материалов и изделий (ОПК-12).

владеть:

- навыками самостоятельно разрабатывать методы и средств автоматизации процессов производства, выбирать оборудование и оснастку (ПК-14);
- навыками самостоятельно использовать технические средства для измерения и контроля основных параметров технологических процессов, структуры и свойств материалов и изделий из них (ПК-14);

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

Общая характеристика материалов с особыми физическими свойствами Классификация материалов по применению. Основы зонной теории твердого тела

Проводниковые материалы

Свойства проводниковых материалов: физическая природа электропроводности металлов, температурная зависимость удельного сопротивления металлов, влияние примесей и дефектов структуры на удельное сопротивление металлов, удельное сопротивление металлических сплавов, электросопротивление тонких металлических пленок. Материалы высокой проводимости: проводниковая медь и ее сплавы, проводниковый алюминий, благородные металлы, тугоплавкие металлы, сверхпроводящие металлы и сплавы. Неметаллические проводники: материалы на основе графита, контактолы. Материалы для электрических контактов: неподвижные контакты, разрывные контакты, скользящие контакты. Материалы высокого удельного сопротивления: сплавы

для образцовых резисторов и технических сопротивлений, материалы для нагревательных элементов, сплавы для термопар, материалы для тонкопленочных резисторов.

Диэлектрики

Основные электрические свойства диэлектриков: поляризация диэлектриков, электропроводность диэлектрические пробой диэлектриков, потери, Газообразные диэлектрики. Жидкие диэлектрики: нефтяные диэлектриков. масла. синтетические жилкие диэлектрики. Неорганические твердые диэлектрики: ситаллы, керамика, оксидная изоляция. слюда, стекла, Органические твердые диэлектрики на основе полимеров: строение и свойства полимеров, высокочастотные линейные полимеры, низкочастотные линейные полимеры, пластмассы, электроизоляционные компаунды, лаки, резина.

Полупроводниковые материалы

проводимость Собственная полупроводников: концентрация собственных Примесная носителей полупроводнике. заряда В проводимость концентрация носителей заряда примесном полупроводников: В полупроводнике, подвижность носителей заряда, удельная проводимость полупроводников, неравновесные носители заряда, рекомбинация. Элементарные Фотопроводимость полупроводников. Люминесценция. германий, полупроводники: кремний, применение полупроводникового кремния. Полупроводниковые германия химические соединения: полупроводниковые соединения AIVBIV, полупроводниковые соединения АШВV, полупроводниковые AIIBVI, соединения полупроводниковые соединения AIVBVI.

Магнитные материалы

Классификация материалов магнитным свойствам. Природа ферромагнетизма. Особенности ферромагнитных Процессы материалов. намагничивания и перемагничивания ферромагнетиков. Магнитные потери. Классификация магнитных материалов. Магнитомягкие материалы: основные характеристики магнитомягких материалов, низкочастотные магнитомягкие материалы, высокочастотные магнитомягкие материалы, магнитные материалы Магнитотвердые специального назначения. материалы: основные характеристики магнитотвердых материалов, основные группы магнитотвердых материалов.

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБРАЗОВАНИЯ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по итогам освоения дисциплины: 1 семестр – дифференцированный зачет.

Вопросы для самоконтроля и проведения зачета

а) Вопросы для самоконтроля

Общая характеристика материалов с особыми физическими свойствами

- 1. Приведите классификацию электротехнических материалов по применению.
 - 2. Какова основная характеристика электропроводности материалов?
- 3. Охарактеризуйте области применения материалов с особыми физическими свойствами.
- 4. В чем различие энергетических диаграмм для проводников, полупроводников и диэлектриков?
- 5. Объясните на основе зонной теории возникновение высокой электропроводности в проводниках.

Проводниковые материалы

- 1. От чего зависит электропроводность идеальных и реальных металлов?
- 2. Как зависит ρ и α_{ρ} от толщины тонкой металлической пленки? Что такое сопротивление квадрата?
- 3. Назовите основные материалы высокой проводимости и их применение.
- 4. Перечислите основные благородные металлы, особенности их свойств и применение.
- 5. Назовите основные тугоплавкие металлы, особенности их свойств и применение.
- 6. Какие материалы применяются для неподвижных контактов?
- 7. Какие материалы используют для слаботочных разрывных контактов?
- 8. Какие материалы применяют для высоконагруженных разрывных контактов?
- 9. Какие материалы применяются для электронагревательных элементов?
- 10.Перечислите методы получения тонких резистивных пленок.
- 11. Какие материалы используются в качестве испарителя и почему?
- 12. Что такое контактолы? С какой целью они используются?

Диэлектрики

- 1. Перечислите основные электрические свойства диэлектриков. Как влияет температура на ε диэлектриков?
- 2. Как влияет напряженность поля на є линейных и нелинейных диэлектриков?
- 3. Чем вызвана электропроводность диэлектриков?
- 4. Перечислите основные виды диэлектрических потерь и укажите, каким диэлектрикам они присущи.
- 5. Что такое электрическая прочность и пробой диэлектриков? Какие факторы влияют на $E_{\rm np}$ воздуха?
- 6. Перечислите преимущества и недостатки нефтяных масел.
- 7. Чем отличаются ситаллы от стекол и керамики?

- 8. Какие пластмассы находят наиболее широкое применение в электрорадиотехнике?
- 9. С какой целью применяются компаунды? От чего зависит их допустимая рабочая температура?

Полупроводниковые материалы

- 1. Чем обеспечивается собственная электропроводность полупроводников?
- 2. Как расположены энергетические уровни донорной и акцепторной примеси в запрещенной зоне полупроводника?
- 3. Каковы причины рассеяния носителей заряда в полупроводнике?
- 4. Может ли проводимость в полупроводнике уменьшаться при повышении температуры?
- 5. Что понимают под фоторезистивным эффектом?
- 6. На чем основан метод кристаллизационной очистки германия и кремния? Какой метод получил широкое применение для выращивания крупных монокристаллов?
- 7. Какие преимущества кремния обеспечивают ему широкое применение при изготовлении планарных транзисторов и интегральных микросхем?
- 8. Какие материалы применяются для солнечных батарей?

Магнитные материалы

- 1. Какова природа ферромагнетизма?
- 2. Перечислите главные особенности ферромагнитных материалов.
- 3. Какие процессы происходят при намагничивании ферромагнетика?
- 4. Как добиться высоких магнитных свойств в электротехнической стали?
- 5. В чем состоит физическая сущность магнетизма ферритов?
- 6. Какие материалы имеют прямоугольную петлю гистерезиса и их применение?
- 7. Назовите основные характеристики магнитотвердых материалов.
- 8. Перечислите основные группы магнитотвердых материалов.

б) Вопросы, включенные в билеты для проведения зачетов

- 1. Классификация материалов по применению.
- 2. Основы зонной теории твердого тела
- 3. Свойства проводниковых материалов: физическая природа электропроводности металлов, температурная зависимость удельного сопротивления металлов.
- 4. Свойства проводниковых материалов: влияние примесей и дефектов структуры на удельное сопротивление металлов.
- 5. Свойства проводниковых материалов: удельное сопротивление металлических сплавов, электросопротивление тонких металлических пленок.
- 6. Материалы высокой проводимости: проводниковая медь и ее сплавы, проводниковый алюминий, благородные металлы.

- 7. Материалы высокой проводимости: тугоплавкие металлы, сверхпроводящие металлы и сплавы.
- 8. Неметаллические проводники: материалы на основе графита, контактолы.
- 9. Материалы для электрических контактов: неподвижные контакты, разрывные контакты, скользящие контакты.
- 10. Материалы высокого удельного сопротивления: сплавы для резисторов и технических сопротивлений, материалы для нагревательных элементов.
- 11. Материалы высокого удельного сопротивления: сплавы для термопар, материалы для тонкопленочных резисторов.
- 12.Основные электрические свойства диэлектриков: поляризация диэлектриков, электропроводность диэлектриков, диэлектрические потери, пробой диэлектриков.
- 13. Газообразные диэлектрики.
- 14. Жидкие диэлектрики: нефтяные масла, синтетические жидкие диэлектрики.
- 15. Неорганические твердые диэлектрики: слюда, стекла, ситаллы, керамика, оксидная изоляция.
- 16.Органические твердые диэлектрики на основе полимеров: строение и свойства полимеров.
- 17. Органические твердые диэлектрики на основе полимеров: пластмассы, электроизоляционные компаунды, лаки, резина.
- 18. Собственная проводимость полупроводников.
- 19. Примесная проводимость полупроводников.
- 20.Подвижность носителей заряда, удельная проводимость полупроводников, неравновесные носители заряда, рекомбинация.
- 21. Фотопроводимость полупроводников. Люминесценция.
- 22. Элементарные полупроводники: германий, кремний, применение полупроводникового германия и кремния.
- 23.Полупроводниковые химические соединения: $A^{IV}B^{IV}$, $A^{III}B^{V}$,
- 24.Полупроводниковые химические соединения: $A^{II}B^{VI}$ и $A^{IV}B^{VI}$.
- 25.Классификация материалов по магнитным свойствам. Природа ферромагнетизма.
- 26.Особенности ферромагнитных материалов. Процессы намагничивания и перемагничивания ферромагнетиков.
- 27. Классификация магнитных материалов: Магнитомягкие материалы.
- 28.Классификация магнитных материалов: Магнитотвердые материалы.

Критерии оценки за освоение дисциплины определены в Инструктивном письме И-23 от 14 мая 2012 г.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература:

- 1. Серебряков А. С. Электротехническое материаловедение. М.: Маршрут, 2005. 280 с. (НТБ МЭИ 100 экз.)
- **2.** Материаловедение. Технология конструкционных материалов : учебное пособие для вузов по направлению «Электротехника, электромеханика и электротехнологии» / А. В. Шишкин, и др. ; Ред. В. С. Чередниченко . 2-е изд., перераб . М. : Омега-Л, 2006 . 752 с. (НТБ МЭИ 4 экз.)
- **3.** Электротехническое материаловедение. Сборник лабораторных работ: методическое пособие по курсам «Электротехническое материаловедение» / В. Н. Бородулин, М. К. Дамбис, Ю. В. Зайцев, [и др.], Нац. исслед. ун-т «МЭИ» . М. : Изд-во МЭИ, 2012 . 64 с. (НТБ МЭИ 50 экз.)

Дополнительная литература:

4. Материаловедение. Технология конструкционных материалов: учебное пособие для вузов по направлению «Электротехника, электромеханика и электротехнологии» / Г. П. Фетисов, [и др.]; Ред. В. С. Чередниченко. – М.: Омега-Л, 2008. – 752 с. (НТБ МЭИ - 1 экз.).