НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Программа аспирантуры

Направление: 09.06.01 Информатика и вычислительная техника

Направленность (специальность): 05.13.12 Системы автоматизации

проектирования (вычислительная техника, информатика, электротехника)

РАБОЧАЯ ПРОГРАММА

дисциплины по выбору

«Управление крупными индустриальными проектами»

Индекс дисциплины по учебному плану: Б1.В.ДВ.4.2

Всего: 108 часов

Семестр: 7, в том числе 6 часов – контактная работа,

84 часов – самостоятельная работа,

18 часов – контроль

Программа составлена основе федерального государственного на образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации) по направлению подготовки 09.06.01 Информатика вычислительная техника, утвержденного приказом министерства образования и науки РФ от 30 июля 2014 № 875, и паспорта 05.13.12 Системы специальности автоматизации проектирования отраслям), номенклатуры специальностей научных работников, утвержденной приказом Минобрнауки России от 25 февраля 2009 г. № 59.

ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью изучения дисциплины является:

- изучение основ применения корпоративных информационных систем управления жизненным циклом изделия (PLM) как базы для реализации задач управления крупными индустриальными программами и проектами;
- освоение методик анализа состояния готовности предприятия к применению PLM для управления крупными индустриальными программами и проектами.

Задачами дисциплины является:

- изучение современных проблем применения корпоративных информационных технологий управления промышленными данными в области управления крупными индустриальными программами и проектами; изучение подсистем управления ведением проекта (Project, Portfolio Product Management);
- изучение семейств стандартов ГОСТ 19 и ГОСТ 34 для формирования технического задания на разработку программных и системных компонент подсистем управления крупными индустриальными программами и проектами; приобретение практических навыков оценок практической целесообразности и применимости разработки систем PLM, основанных на концепциях стандартов применимости.

В процессе освоения дисциплины формируются следующие компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность проектировать и осуществлять комплексные исследования, в
 том числе междисциплинарные, на основе целостного системного
 научного мировоззрения с использованием знаний в области истории и
 философии науки (УК-2);
- владение культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий (ОПК-2);
- способность объективно оценивать результаты исследований и разработок, выполненных другими специалистами и в других научных учреждениях (ОПК-5);
- способность применять современные теоретические и экспериментальные методы разработки математических моделей исследуемых объектов и процессов, относящихся к профессиональной деятельности по направлению подготовки (ПК-1);
- способность выбирать методы и разрабатывать алгоритмы решения задач управления и проектирования объектов автоматизации (ПК-5);
- способность разрабатывать и реализовывать планы информатизации предприятий и их подразделений на основе Web- и CALS-технологий (ПК-6);

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

- что такое информационные технологии управления крупными индустриальными программами и проектами (УК-1);
- основные принципы построения современных систем управления крупными индустриальными программами и проектами (УК-2);
- требования, предъявляемые к компонентам систем управления крупными индустриальными программами и проектами в современной промышленности (ОПК-2);

уметь:

 применять методы оценки готовности предприятия к использованию информационных систем управления крупными индустриальными программами и проектами (ОПК-5).

владеть:

- информацией об основных тенденциях развития стандартизации в области информационных технологий управления крупными индустриальными программами проектами (ПК-5);
- методиками формирования требований к разработке информационных программных компонентов, программ и автоматизированных систем, относящихся к информационным технологиям управления крупными индустриальными программами и проектами (ПК-1);
- методиками внедрения корпоративных систем управления программами и проектами на базе Web-технологий на крупных промышленных предприятиях (ПК-6).

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

1. Понятие «Системы управления крупными индустриальными программами и проектами» (СУКИП)

Особенности понятий «программа», «проект», «портфель» для современного машиностроения. Ведение проектов – управление проектной деятельностью – Project Management; Управление портфелем предприятия – Portfolio Management; Управление программами выпуска изделий – Program

Management. Project Management, Portfolio Management и Program Management – как составные части корпоративных систем PLM.

2. Модель процессов: Методика V-цикла и RFLP- подход к использованию СУКИП

Управление проектами и портфелем заказов как фиксированная последовательность процессов в контексте V-циклической схемы разработки изделий. Управление требованиями - Функциональный анализ - Определение логической структуры - Физическое проектирование - Интеграция - Верификация - Валидация — Выпуск RFLP-формализация. Формализация и структуризация состава требований в случае крупных индустриальных проектов. Формализация и структуризация функционального состава изделия и интеграция с составом требований в случае крупных индустриальных проектов. Структуризация логических связей изделия и интеграция со структурами требований и функций и переход к проектированию. Модель системы на основе SysML.

3. Формализация и структуризация требований: понятие «Техническое Задание». Стандарты

Начальный этап жизненного цикла — формализация структуры состава требований Заказчиком и Исполнителем в случае крупного индустриального проекта. Понятие «Техническое Задание» как отображение структуры состава требований. Состояние стандартизации по теме «техническое задание», ГОСТ на программные компоненты и системы, группы ГОСТ 19 и ГОСТ 34.

4. Эффективность выполнения крупных индустриальных проектов, эффективность исполнения проекта как отображение полноты соответствия структур требований, функциональных модулей и логических связей в крупном индустриальном проекте. Экономическая эффективность, расчётные показатели, границы применимости. Необходимость применения

автоматизированных систем управления проектами, программами и портфелями заказов для обеспечения эффективности выполнения крупных индустриальных проектов. Project, Program и Portfolio Management — подсистемы промышленных систем PLM.

5. Готовность предприятия к эффективному выполнению крупных индустриальных проектов

Показатели технологичности: трудоемкость изготовления - абсолютная и относительная; материалоемкость или масса конструкции - абсолютная или относительная; трудоемкость подготовки изделия к функционированию; степень конструктивной стандартизации и унификации; капиталовложения в производство новой продукции; себестоимость и отпускная цена новой продукции; прибыль и рентабельность производства. Степень освоения PLM на предприятии — как предпосылка к возможности эффективного ведения крупных индустриальных проектов. Принципы перехода от низкотехнологичной модели предприятия к высокотехнологичной организации на основе PLM - Model Based Enterprise (МВЕ). Методика оценки готовности предприятия по МВЕ. Перспективы развития систем управления крупными индустриальными проектами.

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБРАЗОВАНИЯ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по итогам освоения дисциплины: 7 семестр - дифференцированный зачет.

Вопросы для самоконтроля и для проведения зачета

- 1. Что такое модель данных: SysML.
- 2. Что такое модель процессов: V-цикл
- 3. Что такое модель процессов: RFLP-структура реализации.
- 4. Организация совместной деятельности: состояние As-Is.
- 5. Организация совместной деятельности: цели То-Ве.
- 6. Организация совместной деятельности: приёмы и методы.
- 7. Успешная реализация совместной деятельности: Project Management.

- 8. Успешная реализация совместной деятельности: Portfolio Management.
- 9. Успешная реализация совместной деятельности: Program Management.
- 10. Методика RFLP для структуризации процессов управления проектами в рамках жизненного цикла изделия.
- 11. Управление требованиями: техническое задание, его роль и место.
- 12. Стандартизация составления Т3: ГОСТ 34.602.89 «Техническое задание на создание автоматизированной системы»: область применения, ограниичения, для кого предназначается.
- 13. Стандартизация составления Т3: ГОСТ 19.201-78 «Техническое задание. Требования к содержанию и оформлению»: область применения, ограничения, для кого предназначается.
- 14. Технико-экономическое обоснование проектных работ, трудоёмкость, материалоёмкость, конструктивная стандартизация и унификация, технологичность производства: оценочные расчёты, пределы применимости.
- 15. Бизнес-стратегии и бизнес-инициативы.
- 26. Бизнес-процессы: типовой ландшафт, ландщафты по отраслям.
- 17. Реализация PLM: V-цикл и RFLP-технология.
- 18. Уровни зрелости предприятия к внедрению PLM: метрики, сравнение метрик, различия, возможности, применимость.
- 19. Шестиуровневая ("7") матрица готовности IT структуры предприятия ко внедрению системы PLM.
- 20. Практика применения: анкетирование определение текущего уровня зрелости предприятия по матрице готовности.
- 21. Практика применения: анкетирование, анализ, отчётные формы. Критерии оценки за освоение дисциплины определены в Инструктивном письме И-23 от 14 мая 2012 г.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература:

- 1. Арчибальд, Рассел Д. Управление высокотехнологичными программами и проектами: пер. с англ. / Рассел Д. Арчибальд. 3-е изд., перераб. и доп. М.: ДМК Пресс, 2004. 472 с.
- 2. Ньютон, Ричард. Управление проектами от A до Я: пер. с англ. / Ричард Ньютон. М.: Альпина Паблишер, 2009. 180 с.
- 3. Хэлдман, К. Управление проектами. Быстрый старт. М. : Академия АйТи, : ДМК Пресс, 2007. 352 с.

Дополнительная литература:

- 4. И.И. Мазур, Управление проектами: Учебное пособие /Под общ. Ред. Проф. и проф. В.Д.Шапиро. М.: Омега-Л, 2013. 960 с.
- 5. Богданов В.В. Управление проектами в Microsoft Project 2007. СПб.: ПИТЕР, 2008. 592с.
- 6. Стэнли И. Портни Управление проектами для "чайников". М.: Диалектика, 2008г., 368с.
- 7. Alt, M.: Modellbasierte Systementwicklung mit SysML. München: Carl Hanser Verlag, 2012. P.480.