НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

«УТВЕРЖДАЮ»

Проректор НИУ «МЭИ»

Драгунов В.К.

«У миоше 2019 г.

Программа аспирантуры

Направление: <u>15.06.01</u> «Машиностроение»

Направленность (специальность): <u>05.02.10 «Сварка, родственные процессы и</u>

технологии»

РАБОЧАЯ ПРОГРАММА

дисциплины по выбору

«Экспериментальные методы исследования физических процессов при обработке материалов КПЭ»

Индекс дисциплины по учебному плану: Б1.В.ДВ.3.1

Всего: 72 часа

Семестр 5, в том числе

6 часов – контактная работа,

48 часов – самостоятельная работа,

18 часов – контроль

Программа составлена на основе федерального государственного образовательного стандарта высшего образования (уровень подготовки кадров высшей квалификации) по направлению подготовки 15.06.01 «Машиностроение», утвержденного приказом министерства образования и науки РФ от 30 июля 2014 № 878, и паспорта специальности 05.02.10 «Сварка, родственные процессы и технологии» номенклатуры специальностей научных работников, утвержденной приказом Минобрнауки России от 25 февраля 2009 г. № 59.

ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью изучения дисциплины является освоение экспериментальных методов и подходов к исследованию физических процессов при обработке материалов КПЭ с использованием компьютерных средств и численных методов.

Задачами дисциплины являются:

- ознакомление с современными методами исследования физических процессов и явлений возникающих при обработке металлических материалов концентрированными потоками энергии;
- ознакомление с основами организации и планирования эксперимента, статистической обработки экспериментальных данных.

В процессе освоения дисциплины формируются следующие компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способностью планировать и проводить экспериментальные исследования с последующим адекватным оцениванием получаемых результатов (ОПК-5);
- способностью профессионально излагать результаты своих исследований и представлять их в виде научных публикаций, информационноаналитических материалов и презентаций (ОПК-6)

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБРАЗОВАНИЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать следующие результаты образования:

знать:

- методы теоретических и экспериментальных исследований в выбранной сфере деятельности (ОПК-5);
- цели и задачи научных исследований в области получения и обработки материалов, основные источники научно-технической информации в этих областях и требования к представлению информационных материалов (ОПК-6).

уметь:

- выбирать и применять экспериментальные и аналитические методы исследования представлять и продвигать полученные результаты (ОПК-5);
- самостоятельно разрабатывать план работы, методы исследования и способы обработки полученных результатов, представлять в соответствующем виде полученные научные результаты (ОПК-6).

владеть:

- навыками планирования исследования и анализа получаемых результатов (ОПК-5);
- системными знаниями в области получения и обработки материалов, базовыми навыками проведения научно-исследовательских работ в этих областях (ОПК-6).

КРАТКОЕ СОДЕРЖАНИЕ РАЗДЕЛОВ ДИСЦИПЛИНЫ

1. Физические явления, возникающие при обработке материалов электронным лучом

Взаимодействие технологических электронных пучков с остаточными газами вакуумной камеры и поверхностью металлов (отражение, вторичная эмиссия, торможение, рентгеновское излучение). Формирование глубоких парогазовых каналов, тепломассоперенос. Колебательные процессы в канале проплавления. Образование низкотемпературной плазмы. Источники магнитных полей.

2. Основные методы исследований.

Исследование характеристик электронных пучков: оптические и зондовые методы.

Классификация и характеристика основных методов измерения температуры. Контактные методы: термоэлектрические преобразователи, Термопреобразователи сопротивления. Бесконтактные измерения: закон Планка, пирометрия.

Диагностика плазмы. Измерение параметров плазмы методом электрического зонда. Анализ зондовой характеристики. Условия применимости теории зонда.

Методы регистрации магнитных полей: характеристики и ограничения.

3. Основы теории планирование эксперимента

Измерение физических величин. Погрешности измерений. Классификация погрешностей. Обработка результатов измерений. Планирование экспериментов. Аппроксимация зависимости между случайными величинами (регрессионный анализ).

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ РЕЗУЛЬТАТОВ ОБРАЗОВАНИЯ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по итогам освоения дисциплины: 1 семестр — дифференцированный зачет.

Вопросы для самоконтроля и для проведения зачета

- 1. Явления, возникающие при взаимодействии технологических электронных пучков материалами.
- 2. Взаимодействие технологических электронных пучков с остаточными газами вакуумной камеры.
- 3. Эффективность нагрева электронным лучом.
- 4. Излучение и эмиссия из сварочной ванны.
- 5. Кинетика и условия формирования кинжального проплавления при ЭЛС.
- 6. Колебательные процессы в канале проплавления. Взаимодействие электронного луча с плазмой.
- 7. Взаимодействие электронного пучка с электромагнитными полями. Источники магнитных полей.
- 8. Основные характеристики электронных пучков.
- 9. Методы исследования параметров электронных пучков.

- 10. Классификация и характеристика основных методов измерения температуры.
- 11. Принцип действия и характеристики термоэлектрических преобразователей.
- 12. Принцип действия и характеристики термопреобразователей сопротивления
- 13. Приниципы бесконтактного метода измерения температуры: Закон Планка.
- 14. Цветовые и яркостные пирометры.
- 15.Схемы измерения параметров плазмы методом электрического зонда.
- 16.Определение температуры электронов из зондовой характеристики
- 17. Оценка размера поверхности зонда Анализ зондовой характеристики.
- 18. Условия применимости теории зонда.
- 19. Методы регистрации магнитных полей: характеристики и ограничения.
- 20. Измерение физических величин. Погрешности измерений.
- 21. Классификация погрешностей. Обработка результатов измерений.
- 22.Планирование экспериментов. Аппроксимация зависимости между случайными величинами (регрессионный анализ).

Критерии оценки за освоение дисциплины определены в Инструктивном письме И-23 от 14 мая 2012 г.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература:

- 1. Электронно-лучевая сварка / Назаренко О.К., Кайдалов А.А., Ковбасенко С.Н. и др.; Под ред. Б.Е. Патона. Наук. думка, 1987. 265 с.
- 2. Рыкалин Н.Н., Зуев И.В., Углов А.А. Основы электронно-лучевой обработки материалов. М.: Машиностроение. 1978. 239 с.
- 3. Бекряев В. И. Основы теории эксперимента. Учебное пособие. СПб.: Изд. РГГМУ, 2001 266 с.
- 4. Мамутов Е.Л. Электроннолучевая сварка деталей большой толщины. Инженерный поиск / М.: Машиностроение. 1992. 232 с.
- 5. Зуев И.В. Обработка материалов концентрированными потоками энергии. М.: Издательство МЭИ. 1998. 162 с.
- 6. Реброва И.А. Планирование эксперимента: учебное пособие. Омск: СибАДИ, 2010. 105 с.
- 7. Костин В. П. Теория эксперимента: учебное пособие [Электронный ресурс]/В.П. Костин, В.В. Паничев, Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2013 209 с.

- 8. Воскобойников, Ю.Е. Регрессионный анализ данных в пакете MATHCAD + CD. [Электронный ресурс] : Учебные пособия Электрон. дан. СПб. : Лань, 2011. 224 с. Режим доступа: http://e.lanbook.com/book/666
- 9. Франкевич Е.Л. Физические методы исследования: Учеб. пособие. М.: МФТИ, 1980.
- 10. Теплотехнические измерения и приборы: учебное пособие / Ю.К. Атрошенко, Е.В. Иванова; Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2014 151с.

Дополнительная литература:

- 11.ГОСТ 24026-80 « Исследовательские испытания. Планирование эксперимента. Термины и определения. М.,1980.
- 12.Смирнов Б.М. Введение в физику плазмы. М. Наука 1982.
- 13. Ю.Л.Райзер. Физика газового разряда. М.:Наука, 1987.С. 277-234, 286-288, 292-295, 378-383.
- 14. Хаддлстоун. Диагностика плазмы. М.:Мир, 1979. С. 94-125.
- 15. Гордов А.Н., Жагулло О.М., Иванова А.Г. Основы температурных измерений. М. Энергоатомиздат. 1992