Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский университет «МЭИ»

Институт проблем энергетической эффективности (ИПЭЭф)

СОГЛАСОВАНО

УТВЕРЖДЕНА решением Ученого совета МЭИ

201 Jr. № 03/18

Межрегиональное межотраслевое объединение работодателей "Федеральная палата энергосбережения,

энергоэффектив делина поргобезопасности"

Управляющия директор

В.Л. Титов

Ректор Иска

ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Направление подготовки: 13.04.01 Теплоэнергетика и теплотехника

Магистерская программа подготовки: Энергообеспечение предприятий.

Высокотемпературные процессы и установки

Тип: прикладная магистратура

Вид профессиональной деятельности: производственно-технологическая

Квалификация (степень) выпускника: магистр

1. ОБШИЕ ПОЛОЖЕНИЯ

Основная профессиональная образовательная программа (далее – образовательная программа), реализуемая в МЭИ, представляет собой комплект документов, разработанный и утвержденный в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) с учетом профессиональных стандартов.

Образовательная программа представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных средств, методических материалов.

Образовательная программа позволяет осуществлять обучение инвалидов и лиц с ограниченными возможностями здоровья. С этой целью в вариативную часть образовательной программы, при необходимости, включаются специализированные адаптационные и адаптированные дисциплины и практики.

Нормативные документы для разработки образовательной программы

Нормативную правовую базу разработки образовательной программы составляют:

Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с последующими дополнениями и изменениями);

«Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры», утвержденный приказом Минобрнауки России от 19 декабря 2013 г. № 1367 (с последующими дополнениями и изменениями);

Федеральный государственный образовательный стандарт высшего образования (уровень высшего образования – магистратура) по направлению 13.04.01 Теплоэнергетика и теплотехника, утвержденный приказом Министерства образования и науки Российской Федерации от 21 ноября 2014 г. № 1499;

Нормативно-методические документы Минобрнауки России;

Устав МЭИ:

Локальные акты МЭИ:

Профессиональные стандарты: профессиональный стандарт «Специалист по научноисследовательским и опытно-конструкторским разработкам» (утвержден приказом Министерства труда и социальной защиты РФ от 4 марта 2014 г. № 121н).

2. ОБЩАЯ ХАРАКТЕРИСТИКА ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цель образовательной программы

Обеспеченность растущей экономики России энергоресурсами, являющаяся одним из условий повышения качества жизни населения страны, неразрывно связана с эффективным решением проблемы энергосбережения – ключевой энергетической проблемы современности.

Значительные резервы энергосбережения кроются в области конечного энергоиспользования, в том числе в высокотемпературных процессах и установках промышленных предприятий. В указанных объектах наряду со значительными масштабами энергопотребления наблюдается наиболее низкий уровень эффективности использования энергоресурсов.

Таким образом, одно из направлений работы по выявлению и реализации наиболее масштабного резерва энергосбережения следует сориентировать на теплотехнологические объекты энергоемких отраслей промышленного производства, обращая особое внимание при этом на совершенствование энергообеспечения предприятий и эффективности энергоиспользования в теплотехнологиях, которые базируются на высокотемпературных

процессах и установках.

Цель образовательной программы — подготовка квалифицированных профильноориентированных специалистов в области энергообеспечения предприятий и эффективности энергоиспользования в высокотемпературных процессах и установках, которые обладают необходимыми компетенциями для решения комплекса задач, в том числе:

- совершенствование промышленных теплоэнергетических и теплотехнологических установок, систем и комплексов;
- поиск структур и принципов действия теплотехнического оборудования, которые обеспечивают сбережение энергетических ресурсов, уменьшение энергетических затрат на единицу продукции, сбережение материальных ресурсов, направляемых на изготовление теплопередающего и теплоиспользующего оборудования, защиту окружающей среды;
- разработка и создание нового и наиболее совершенного теплотехнического и теплотехнологического оборудования.

Форма обучения: очная.

Объем программы: 120 зачетных единиц.

Сроки получения образования: 2 года.

Использование электронного обучения, дистанционных образовательных технологий и сетевой формы при реализации образовательной программы.

При реализации программы магистратуры организация вправе применять электронное обучение и дистанционные образовательные технологии.

Реализация программы магистратуры возможна с использованием сетевой формы.

Язык обучения: русский.

Требования к абитуриенту: абитуриент должен иметь документы в соответствии с Правилами приема в МЭИ, которые устанавливаются решением Ученого совета МЭИ, и пройти вступительные испытания согласно утвержденной программе.

3. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Область профессиональной деятельности выпускника: включает совокупность технических средств, способов и методов человеческой деятельности по применению теплоты, управлению ее потоками и преобразованию иных видов энергии в теплоту.

Объекты профессиональной деятельности выпускника:

тепловые и атомные электрические станции, системы энергообеспечения предприятий, объекты малой энергетики, установки, системы и комплексы высокотемпературной и низкотемпературной теплотехнологии; паровые и газовые турбины; энергоблоки, парогазовые и газотурбинные установки; тепловые насосы; химические реакторы, топливные элементы, электрохимические энергоустановки; установки водородной энергетики; вспомогательное теплотехническое оборудование; тепло- и массообменные аппараты различного назначения; топливо и масла; нормативно-техническая документация и системы

стандартизации; системы диагностики и автоматизированного управления технологическими процессами в теплоэнергетике и теплотехнике.

Виды профессиональной деятельности выпускника: производственно-технологическая.

Задачи профессиональной деятельности выпускника:

- разработка мероприятий по соблюдению технологической дисциплины, совершенствованию методов организации труда в коллективе, совершенствованию технологии производства продукции;
- обеспечение бесперебойной работы, правильной эксплуатации, ремонта и модернизации энергетического, теплотехнического и теплотехнологического оборудования, электрических и тепловых сетей, газо- и продуктопроводов;
 - определение потребности производства в топливно-энергетических ресурсах,
- подготовка обоснований развития энергохозяйства, реконструкции и модернизации систем энергоснабжения;
- выполнение патентных исследований, включающих обзор и анализ информации о технических решениях в области совершенствования энергообеспечения и энергосбережения в высокотемпературных процессах и установках;
- выбор либо разработка и создание нового и наиболее совершенного теплотехнического и теплотехнологического оборудования.

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения образовательной программы у выпускника должны быть сформированы следующие компетенции:

Общекультурные компетенции:

- способность к абстрактному мышлению, обобщению, анализу, систематизации и прогнозированию (ОК-1);
- способность действовать в нестандартных ситуациях, нести ответственность за принятые решения (ОК-2);
- способность к саморазвитию, самореализации, использованию творческого потенциала (OK-3).

Общепрофессиональные компетенции:

- способность формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать и создавать критерии оценки (ОПК-1);
- способность применять современные методы исследования, оценивать и представлять результаты выполненной работы (ОПК-2);
 - способность использовать иностранный язык в профессиональной сфере (ОПК-3).

Профессиональные компетенции:

- способность к разработке мероприятий по совершенствованию технологии производства (ПК-3);
- готовность к обеспечению бесперебойной работы, правильной эксплуатации, ремонта и модернизации энергетического, теплотехнического и теплотехнологического оборудования, средств автоматизации и защиты, электрических и тепловых сетей, воздухопроводов и газопроводов (ПК-4);
- способность к определению потребности производства в топливно-энергетических ресурсах, обоснованию мероприятий по экономии энергоресурсов, разработке норм их расхода, расчету потребностей производства в энергоресурсах (ПК-5);
 - готовность применять методы и средства автоматизированных систем управления

технологическими процессами в теплоэнергетике, теплотехнике и теплотехнологиях (ПК-6).

Дополнительно формируемые профессиональные компетенции:

- способность к проведению технических расчетов по проектам, технико-экономического и функционально-стоимостного анализа эффективности проектных решений, с использованием прикладного программного обеспечения для расчета параметров и выбора серийного и разработки нового теплоэнергетического, теплотехнического и теплотехнологического оборудования (ПК-2);
- способность применять актуальную нормативную документацию в соответствующей области знаний (ПК-12 разработано в соответствии с требованиями профессионального стандарта).

Компетентностно-формирующая часть учебного плана, определяющая этапы формирования компетенций дисциплинами учебного плана, представлена в приложении 1 к образовательной программе.

5. УЧЕБНЫЙ ПЛАН И КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Учебный план определяет перечень и последовательность освоения дисциплин, практик, промежуточной и государственной итоговой аттестаций, их трудоемкость в зачетных единицах и академических часах, распределение контактной работы обучающихся с преподавателем (в том числе лекционные, практические, лабораторные виды занятий, консультации) и самостоятельной работы обучающихся.

Календарный учебный график определяет сроки и периоды осуществления видов учебной деятельности и периоды каникул.

Учебный план образовательной программы и календарный учебный график представлены в приложении 2 к образовательной программе.

6. РАБОЧИЕ ПРОГРАММЫ ДИСЦИПЛИН

Аннотации всех учебных дисциплин представлены в приложении 3 к образовательной программе.

7. ПРОГРАММЫ ПРАКТИК

Аннотации всех практик (включая НИР) представлены в приложении 4 к образовательной программе.

8. ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ

Государственная итоговая аттестация является обязательной и осуществляется после освоения всех предусмотренных образовательной программой дисциплин и практик в полном объеме. Государственная итоговая аттестация включает в себя подготовку к защите и защиту выпускной квалификационной работы магистра.

9. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Фонды оценочных средств представлены в приложении 5 к образовательной программе.

10. ФАКТИЧЕСКОЕ РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ

Кадровое обеспечение образовательного процесса приведено в приложении 6 к образовательной программе.

Руководитель образовательной программы: Попов Станислав Константинович,

профессор, доктор технических наук, доцент. Им подготовлен 1 кандидат технических наук. Имеет 171 научную публикацию, в том числе 142 научных статей, докладов и тезисов докладов, 13 патентов и свидетельств о государственной регистрации программ для ЭВМ, 16 учебных и учебно-методических пособий.

За последние 3 года участвовал в выполнении одной НИР. За последние 3 года им опубликовано 22 научных статей, докладов и тезисов докладов, 3 патента на изобретение и на полезные модели. Среди этих публикаций – 6 статей в издательствах, рекомендованных ВАК.

Для реализации образовательной программы используется материально-техническая база, обеспечивающая проведение всех предусмотренных учебным планом видов дисциплинарной и междисциплинарной подготовки, лабораторной, практической, научно-исследовательской и самостоятельной работы обучающихся.

Перечень материально-технического обеспечения включает в себя:

- лаборатории высокотемпературных процессов и установок, промышленных теплоэнергетических систем, тепломассообменных процессов и установок, оснащенные современным оборудованием (в том числе сложным) и расходными материалами;
 - компьютерные (дисплейные) классы;
- аудитории, оборудованные мультимедийным и (или) презентационным оборудованием;
 - комплект лицензионного программного обеспечения.

Описание материально-технического обеспечения образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

Учебно-методическое обеспечение образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

ОБРАЗОВАТЕЛЬНУЮ ПРОГРАММУ СОСТАВИЛИ:

Профессор кафедры энергетики высокотемпературной технологии Руководитель магистерской программы д.т.н., доцент

С.К. Попов

Зав. кафедрой энергетики высокотемпературной технологии к.т.н., доцент

Т.А. Степанова

Директор Института проблем энергетической эффективности к.т.н., доцент

С.В. Захаров

СОГЛАСОВАНО:

Первый проректор – проректор по учебной работе

.А. Степанова

Начальник учебного управления

Д.А. Иванов

Начальник отдела методического обеспечения и управления качеством образования

А.В. Носов