Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

ИНСТИТУТ ЭЛЕКТРОТЕХНИКИ (ИЭТ)

СОГЛАСОВАНА ОАО «ВНИИКП»

Сенеральный директор

Г.И.Мещанов

201 г.

УТВЕРЖДЕНА

решением Ученого совета МЭИ

FW 13/14 T. No 13/14

Ректор Маш 6 Н.Д. Рогален

ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Направление подготовки (специальность): 13.04.02 Электроэнергетика и электротехника

Профиль(и) подготовки Электроматериаловедение, физика и техника электрической изоляции, кабелей и электроконденсаторостроения

Тип: прикладная

Вид(ы) профессиональной деятельность(и): проектно-конструкторская, производственно-технологическая

Квалификация выпускника: магистр

1. ОБШИЕ ПОЛОЖЕНИЯ

Основная профессиональная образовательная программа (далее – образовательная программа), реализуемая в МЭИ, представляет собой комплект документов, разработанный и утвержденный в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) с учетом профессиональных стандартов.

Образовательная программа представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных средств, методических материалов.

Образовательная программа позволяет осуществлять обучение инвалидов и лиц с ограниченными возможностями здоровья. С этой целью в вариативную часть образовательной программы, при необходимости, включаются специализированные адаптационные и адаптированные дисциплины и практики.

Нормативные документы для разработки образовательной программы

Нормативную правовую базу разработки образовательной программы составляют:

Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с последующими дополнениями и изменениями);

«Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры», утвержденный приказом Минобрнауки России от 19 декабря 2013 г. № 1367 (с последующими дополнениями и изменениями);

Федеральный государственный образовательный стандарт по 13.04.02 Электроэнергетика и электротехника высшего образования, утвержденный приказом Министерства образования и науки Российской Федерации от «21» ноября 2014г. №1500;

Нормативно-методические документы Минобрнауки России;

Устав МЭИ;

Локальные акты МЭИ.

2. ОБЩАЯ ХАРАКТЕРИСТИКА ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Цель образовательной программы

Подготовка квалифицированных специалистов для электротехнической и кабельной отраслей промышленности путем развития у студентов личностных качеств, а также формирование общекультурных и профессиональных компетенций в соответствии ${\bf c}$ требованиями $\Phi\Gamma$ OC BO.

Особенностью данной образовательной программы является ее направленность на подготовку выпускников, способных успешно работать в профессиональной сфере разработки, производства изделий и материалов электроизоляционной, кабельной и конденсаторной техники.

Форма обучения: очная

Объем программы: 120 зачетных единиц.

Сроки получения образования: 2 года

Использование электронного обучения, дистанционных образовательных технологий и сетевой формы при реализации образовательной программы. *Не используются*.

Язык обучения: русский.

Требования к абитуриенту: абитуриент должен иметь документы в соответствии с Правилами приема в МЭИ, которые устанавливаются решением Ученого совета МЭИ, и пройти вступительные испытания согласно утвержденной программе.

3. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Область профессиональной деятельности выпускника:

Область профессиональной деятельности выпускника включает: совокупность технических средств, способов и методов человеческой деятельности для производства, передачи, распределения, преобразования, применения электрической энергии, управления потоками энергии, разработки и изготовления элементов, устройств и систем, реализующих эти процессы.

Выпускник направления может осуществлять профессиональную деятельность на промышленных предприятиях различных форм собственности и в научно-исследовательских организациях, занимающихся исследованием, производством и эксплуатацией материалов и изделий изоляционной и кабельной техники.

Объекты профессиональной деятельности выпускника:

Объектами профессиональной деятельности бакалавров являются:

- электроизоляционные материалы, изделия, кабельная техника, силовые электрические конденсаторы, проектирование, производство, испытания и диагностика;
- электрическая изоляция электроэнергетических и электротехнических устройств, кабельные изделия и провода, электрические конденсаторы, материалы и системы электрической изоляции кабелей, электрических конденсаторов;

Виды профессиональной деятельности выпускника:

- проектно-конструкторская;
- производственно-технологическая основная.

Задачи профессиональной деятельности выпускника:

- анализ состояния и динамики показателей качества изделий электроизоляционной, кабельной и конденсаторной техники (ЭИККТ) с использованием необходимых методов и средств исследований;
- создание математических моделей процессов и явлений, протекающих в электроизоляционных материалах, изделиях ЭИККТ;
- разработка планов и программ проведения исследований материалов и изделий ЭИККТ;
- прогнозирование последствий принимаемых решений;
- нахождение компромиссных решений в условиях многокритериальности и неопределенности при проектировании изделий ЭИККТ;
- планирование реализации проекта;
- оценка технико-экономической эффективности принимаемых решений при проектировании и производстве изделий и материалов ЭИККТ;
- разработка норм выработки, технологических нормативов на расход материалов, заготовок,
- топлива и электроэнергии при производстве изделий и материалов ЭИККТ;
- выбор оборудования и технологической оснастки производства изделий и материалов ЭИККТ:
- оценка экономической эффективности технологических процессов при внедрении новых технологий;
- разработка мероприятий по эффективному использованию энергии и сырья;
- выбор методов и способов обеспечения экологической безопасности производства.

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения образовательной программы у выпускника должны быть сформированы следующие компетенции:

Общекультурные (универсальные) компетенции:

- 1) способностью к абстрактному мышлению, обобщению, анализу, систематизации и прогнозированию (ОК-1);
- 2) способностью действовать в нестандартных ситуациях, нести ответственность за принятые решения (ОК-2);
- 3) способностью к саморазвитию, самореализации, использованию творческого потенциала (ОК-3).

Общепрофессиональные компетенции:

- 1) способностью формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать и создавать критерии оценки (ОПК-1);
- 2) способностью применять современные методы исследования, оценивать и представлять результаты выполненной работы (ОПК-2);
- 3) способностью использовать иностранный язык в профессиональной сфере (ОПК-3);
- 4) способностью использовать углубленные теоретические и практические знания, которые находятся на передовом рубеже науки и техники в области профессиональной деятельности (ОПК-4);

Профессиональные компетенции:

- 1) способностью планировать и ставить задачи исследования, выбирать методы экспериментальной работы, интерпретировать и представлять результаты научных исследований (ПК-1):
- 2) способностью самостоятельно выполнять исследования (ПК-2);
- 3) способностью формулировать технические задания, разрабатывать и использовать средства автоматизации при проектировании и технологической подготовке производства (ПК-6);
- 4) способностью применять методы анализа вариантов, разработки и поиска компромиссных решений (ПК-7);
- 5) способностью применять методы создания и анализа моделей, позволяющих прогнозировать свойства и поведение объектов профессиональной деятельности (ПК-8):
- 6) способностью выбирать серийные и проектировать новые объекты профессиональной деятельности (ПК-9);
- 7) способностью управлять проектами разработки объектов профессиональной деятельности (ПК-10);
- 8) способностью осуществлять технико-экономическое обоснование проектов (ПК-11);
- 9) способностью управлять действующими технологическими процессами, обеспечивающими выпуск продукции, отвечающей требованиям стандартов и рынка (ПК-12);
- 10) способностью к реализации мероприятий по экологической безопасности предприятий (ПК-18);
- 11) способностью осуществлять маркетинг объектов профессиональной деятельности (ПК-19);
- 12) способностью организовать работу по повышению профессионального уровня работников (ПК-20);
- 13) способностью к реализации различных видов учебной работы (ПК-21);
- 14) готовностью эксплуатировать, проводить испытания и ремонт технологического оборудования электроэнергетической и электротехнической промышленности (ПК-22);

- 15) готовностью применять методы и средства автоматизированных систем управления технологическими процессами электроэнергетической и электротехнической промышленности (ПК-23);
- 16) способностью принимать решения в области электроэнергетики и электротехники с учетом энерго- и ресурсосбережения (ПК-24);
- 17) способностью разработки планов, программ и методик проведения испытаний электротехнических и электроэнергетических устройств и систем (ПК-25);
- 18) способностью определять эффективные производственно-технологические режимы работы объектов электроэнергетики и электротехники (ПК-26);
- 19) способностью к проверке технического состояния и остаточного ресурса оборудования и организации профилактических осмотров и текущего ремонта (ПК-28);

Компетентностно-формирующая часть учебного плана, определяющая этапы формирования компетенций дисциплинами учебного плана, представлена в *приложении* l κ $O\Pi O\Pi$.

5. УЧЕБНЫЙ ПЛАН И КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Учебный план и календарный учебный график представлены в приложении 2 к ОПОП.

6. РАБОЧИЕ ПРОГРАММЫ ДИСЦИПЛИН

Аннотации всех учебных дисциплин представлены в приложении 3 к ОПОП.

7. ПРОГРАММЫ ПРАКТИК

Аннотации всех практик (включая НИР) представлены в приложении 4 к ОПОП.

8. ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ

Государственная итоговая аттестация является обязательной и осуществляется после освоения всех предусмотренных образовательной программой дисциплин и практик в полном объеме. Государственная итоговая аттестация включает в себя подготовку к защите и защиту выпускной квалификационной работы.

9. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Фонды оценочных средств представлены в приложении 5 к ОПОП.

10. ФАКТИЧЕСКОЕ РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ

Кадровое обеспечение образовательного процесса приведено в приложении 6 к ОПОП.

Руководитель образовательной программы:

Серебрянников Сергей Владимирович, заведующий кафедрой Физики и технологии электротехнических материалов и компонентов, доктор технических наук, профессор.

Основные результаты научной, научно-методической и творческой деятельности.

Научно-исследовательская работа

- 1. Исследование теплофизических и электрофизических свойств новых ультрадисперсных материалов с радиопоглощающими свойствами. Руководитель. Грант РФФИ (2013-2015 гг.) №13-08-00905.
- 2. Исследование свойств электроизоляционных материалов. Руководитель. Хоз. договор №2011140 с ОАО «Электроизолит».

Публикации (2013-2015 гг.)

1. ЭУМК «Расчет, конструирование и системы электрической изоляции», 2013, 140400,

магистр.

- 2. ЭУМК «Электрические конденсаторы», 2014, 13.04.02, магистр.
- 3. Электродинамические свойства диспергированных гексаферритовых наполнителей и радиопоглощающих покрытий. Электричество, 2013, № 5, с.37-41. ИФ 0,259
- 4. Магнитодиэлектрические поглотители СВЧ-излучения на основе ферримагнитных соединений. Электричество. 2013, № 11, с.36-40. ИФ 0,259
- 5. XV международная конференция «Электромеханика, электротехнологии, электротехнические материалы и компоненты». Кабели и провода. 2014, №5
- 6. Модифицированные имидные матрицы для радиопоглощающих материалов и покрытий. Труды 12-й Всероссийской с международным участием научно-техничекой конференции в 2-х томах. Т.2., Сб.трудов. М.:МАТИ, 2013, с. 101 106.
- 7. Конференция, посвященная 60-летию начала подготовки в Китае по специальности электроизоляция и кабели. (Китай, Сиань), 2013
- 8. XXI международная конференция «Электромагнитное поле и материалы» (Москва)
- 9. 12-я Всероссийская с международным участием конференция «Быстрозакаленные материалы и покрытия» (Москва), 2013
- 10. XV международная конференция «Электромеханика, электротехнологии, электротехнические материалы и компоненты» (Крым, Алушта). 2014.
- 11. XXII международная конференция «Электромагнитное поле и материалы» (Москва). 2014

<u>Членство в научно-технических и учебно-методических советах (ведомственного и межведомственного уровня)</u>

- 1. Член Президиума ВАК
- 2. Член экспертного совета ВАК по энергетике, электрификации и энергетическому машиностроению
- 3. Член совета директоров ФСК ЕЭС
- 4. Член НТС ЕЭС (НП)
- 5. Член научного совета университета Европейского энергетического форума (EUREF- TU Berlin)

Членство в редколлегиях российских и международных журналов из перечня ВАК

- 1. «Вестник МЭИ»
- 2. «Известия вузов. Машиностроение»
- 3. «Электричество»
- 4. «Advances in electrical and electronic engineering» (Чехия)

<u>Членство в программных и организационных комитетах международных и российских</u> конференций

- 1. Международная конференция «Электромеханика, электротехнологии, электротехнические материалы и компоненты» (председатель конференции)
- 2. Международная конференция «Электромагнитное поле и материалы» (председатель программного комитета и сопредседатель оргкомитета)

Членство в диссертационных советах МЭИ

- 1. Д.212.157.15, МЭИ (член совета)
- 2. Д. 520.026.01 ВНИИКП (член совета)

Для реализации образовательной программы используется материально-техническая база, обеспечивающая проведение всех предусмотренных учебным планом видов дисциплинарной и междисциплинарной подготовки, лабораторной, практической, научно-исследовательской и самостоятельной работы обучающихся.

Перечень материально-технического обеспечения включает в себя:

- лаборатории Электротехническое материаловедение, Основы кабельной техники,
 Физики диэлектриков, Электрические и тепловые характеристики изоляционных материалов,
 оснащенные современным оборудованием (в том числе сложным) и расходными материалами;
 - компьютерный класс с доступом в Интернет;
 - аудитории, оборудованные мультимедийным и презентационным оборудованием;
- лицензионное программное обеспечение: Microsoft Office 2003, MathCAD 14, Elcut 6.01 (профессиональная сетевая версия на 15 рабочих мест).

Описание материально-технического обеспечения образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

Учебно-методическое обеспечение образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

ОБРАЗОВАТЕЛЬНУЮ ПРОГРАММУ СОСТАВИЛ:

Зам. зав. кафедрой Физики и технологии электротехнических материалов и компонентов по учебной работе к.т.н., доцент

Руководитель магистерской программы зав. кафедрой Физики и технологии электротехнических материалов и компонентов д.т.н.,профессор

Зав. кафедрой Физики и технологии электротехнических материалов и компонентов д.т.н. профессор

Директор института Электротехники к.т.н., доцент

СОГЛАСОВАНО:

Первый проректор – проректор по учебной работе

Начальник учебного управления

Начальник отдела методического обеспечения и управления качеством образования

А.А.Сутченков

С.В.Серебрянников

С.В.Серебрянников

С.А.Грузков

Т.А. Степанова

А.В. Носов

Д.А. Иванов