Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Институт электротехники

УТВЕРЖДЕНА АО «ГОКБ «Прожектор» (СОБОБОЕ ИЗИС) (СОБОБОЕ ИЗИ) (СОБОБОЕ ИЗИС) (СОБ

ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Направление подготовки (специальность): 13.04.02 Электроэнергетика и электротехника

Профиль(и) подготовки: Электротехнические, электромеханические и электронные системы автономных объектов

Тип: прикладная

Вид(ы) профессиональной деятельность(и): проектно-конструкторская; организационно-управленческая; производственно-технологическая; монтажно-наладочная; сервисно-эксплуатационная

Квалификация выпускника: магистр

1. ОБЩИЕ ПОЛОЖЕНИЯ

Основная профессиональная образовательная программа (далее – образовательная программа), реализуемая в МЭИ, представляет собой комплект документов, разработанный и утвержденный в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) с учетом профессиональных стандартов.

Образовательная программа представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных средств, методических материалов.

Образовательная программа позволяет осуществлять обучение инвалидов и лиц с ограниченными возможностями здоровья. С этой целью в вариативную часть образовательной программы, при необходимости, включаются специализированные адаптационные и адаптированные дисциплины и практики.

Нормативные документы для разработки образовательной программы

Нормативную правовую базу разработки образовательной программы составляют:

Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с последующими дополнениями и изменениями);

«Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры», утвержденный приказом Минобрнауки России от 19 декабря 2013 г. № 1367 (с последующими дополнениями и изменениями);

Федеральный государственный образовательный стандарт по направлению подготовки 13.04.02 Электроэнергетика и электротехника (уровень магистратуры) высшего образования, утвержденный приказом Министерства образования и науки Российской Федерации от «21» ноября 2014 г. № 1500;

Нормативно-методические документы Минобрнауки России;

Устав МЭИ;

Локальные акты МЭИ:

Профессиональные стандарты: 25.001 «Проектирование И конструирование космических аппаратов, космических систем и их составных частей», 25.003 «Разработка и производство приборов ориентации, навигации и стабилизации летательных аппаратов и их составных частей в ракетно-космической промышленности», 40.008 «Организация и управление научно-исследовательскими И опытно-конструкторскими разработками (НИОКР)», 40.011 «Проведение научно-исследовательских и опытно-конструкторских разработок», 25.006 «Организация работ по обеспечению надежности пилотируемых космических кораблей и станций», 32.001 «Разработка комплексов бортового оборудования (КБО) авиационных летательных аппаратов», 32.002 «Проектирование и конструирование авиационной техники», 25.015 «Разработка системы управления полетами ракет-носителей и космических аппаратов».

2. ОБЩАЯ ХАРАКТЕРИСТИКА ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цель образовательной программы

Обеспечение национальной безопасности и интенсивного социально-экономического развития России путём подготовки высококвалифицированных кадров, обладающих высоким культурно-образовательным уровнем, овладевших знаниями в области электротехники, электромеханики и электроники и получивших навыки выполнения научно-исследовательских, проектно-конструкторских, организационно-управленческих,

производственно-технологических, монтажно-наладочных и сервисно-эксплуатационных работ.

Форма обучения: очная.

Объем программы: 120 зачетных единиц.

Сроки получения образования: 2 года.

Использование электронного обучения, дистанционных образовательных технологий и сетевой формы при реализации образовательной программы. При реализации программы магистратуры применяются дистанционные образовательные технологии.

Язык обучения: русский.

Требования к абитуриенту: абитуриент должен иметь документы в соответствии с Правилами приема в МЭИ, которые устанавливаются решением Ученого совета МЭИ, и пройти вступительные испытания согласно утвержденной программе.

3. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Область профессиональной деятельности выпускника:

 совокупность технических средств, способов и методов человеческой деятельности для производства, передачи, распределения, преобразования, применения электрической энергии, управления потоками энергии, разработки и изготовления элементов, устройств и систем, реализующих эти процессы.

Объекты профессиональной деятельности выпускника:

- элементы и системы электрического оборудования автомобилей и тракторов;
- электроэнергетические системы, преобразовательные устройства и электроприводы энергетических, технологических и вспомогательных установок, их системы автоматизации, контроля и диагностики на летательных аппаратах.

Виды профессиональной деятельности выпускника:

проектно-конструкторская; организационно-управленческая; производственно-технологическая; монтажно-наладочная; сервисно-эксплуатационная.

Задачи профессиональной деятельности выпускника:

- анализ состояния и динамики показателей качества объектов деятельности с использованием необходимых методов и средств исследований;
 - создание математических моделей объектов профессиональной деятельности;
 - разработка планов и программ проведения исследований;
 - анализ и синтез объектов профессиональной деятельности;
- организация защиты объектов интеллектуальной собственности и результатов исследований;
 - формирование целей проекта (программы), критериев и показателей достижения

целей, построение структуры их взаимосвязей, выявление приоритетов решения задач;

- разработка и анализ обобщенных вариантов решения проблемы;
- нахождение компромиссных решений в условиях многокритериальности и неопределенности;
 - планирование реализации проекта;
 - оценка технико-экономической эффективности принимаемых решений;
- организация работы коллектива исполнителей, принятие управленческих решений в условиях различных мнений, организация повышения квалификации сотрудников подразделений в области профессиональной деятельности;
- адаптация современных версий систем управления качеством к конкретным условиям производства на основе международных стандартов, осуществление технического контроля и управления качеством;
- разработка норм выработки, технологических нормативов на расход материалов, заготовок, топлива и электроэнергии;
 - выбор оборудования и технологической оснастки;
 - разработка мероприятий по эффективному использованию энергии и сырья;
 - выбор методов и способов обеспечения экологической безопасности производства;
- организация и участие в проведении монтажа и наладки электроэнергетического и электротехнического оборудования;
- организация эксплуатации и ремонта электроэнергетического и электротехнического оборудования.

4. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения образовательной программы у выпускника должны быть сформированы следующие компетенции:

Общекультурные (универсальные) компетенции:

- 1) способностью к абстрактному мышлению, обобщению, анализу, систематизации и прогнозированию (ОК-1);
- 2) способностью действовать в нестандартных ситуациях, нести ответственность за принятые решения (ОК-2);
- 3) способностью к саморазвитию, самореализации, использованию творческого потенциала (ОК-3).

Общепрофессиональные компетенции:

- 4) способностью формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать и создавать критерии оценки (ОПК-1);
- 5) способностью применять современные методы исследования, оценивать и представлять результаты выполненной работы (ОПК-2);
- 6) способностью использовать иностранный язык в профессиональной сфере (ОПК-3);
- 7) способностью использовать углубленные теоретические и практические знания, которые находятся на передовом рубеже науки и техники в области профессиональной деятельности (ОПК-4).

Профессиональные компетенции:

1) способностью планировать и ставить задачи исследования, выбирать методы экспериментальной работы, интерпретировать и представлять результаты

- научных исследований (ПК-1);
- 2) способностью самостоятельно выполнять исследования (ПК-2);
- 3) способностью проводить поиск по источникам патентной информации, определять патентную чистоту разрабатываемых объектов техники, подготавливать первичные материалы к патентованию изобретений, регистрации программ для электронных вычислительных машин и баз данных (ПК-4);
- 4) способностью формулировать технические задания, разрабатывать и использовать средства автоматизации при проектировании и технологической подготовке производства (ПК-6);
- 5) способностью применять методы анализа вариантов, разработки и поиска компромиссных решений (ПК-7);
- 6) способностью применять методы создания и анализа моделей, позволяющих прогнозировать свойства и поведение объектов профессиональной деятельности (ПК-8);
- 7) способностью выбирать серийные и проектировать новые объекты профессиональной деятельности (ПК-9);
- 8) способностью управлять проектами разработки объектов профессиональной деятельности (ПК-10);
- 9) способностью осуществлять технико-экономическое обоснование проектов (ПК-11);
- 10) способностью управлять действующими технологическими процессами, обеспечивающими выпуск продукции, отвечающей требованиям стандартов и рынка (ПК-12);
- 11) способностью использовать элементы экономического анализа в организации и проведении практической деятельности на предприятии (ПК-13);
- 12) способностью разрабатывать планы и программы организации инновационной деятельности на предприятии (ПК-14);
- 13) готовностью управлять программами освоения новой продукции и технологии (ПК-15):
- 14) способностью разрабатывать эффективную стратегию и формировать активную политику управления с учетом рисков на предприятии (ПК-16);
- 15) способностью владеть приемами и методами работы с персоналом, методами оценки качества и результативности труда персонала, обеспечения требований безопасности жизнедеятельности (ПК-17);
- 16) способностью к реализации мероприятий по экологической безопасности предприятий (ПК-18);
- 17) способностью осуществлять маркетинг объектов профессиональной деятельности (ПК-19);
- 18) способностью организовать работу по повышению профессионального уровня работников (ПК-20);
- 19) способностью к реализации различных видов учебной работы (ПК-21);
- 20) готовностью эксплуатировать, проводить испытания и ремонт технологического оборудования электроэнергетической и электротехнической промышленности (ПК-22);
- 21) готовностью применять методы и средства автоматизированных систем управления технологическими процессами электроэнергетической и электротехнической промышленности (ПК-23);
- 22) способностью принимать решения в области электроэнергетики и электротехники с учетом энерго- и ресурсосбережения (ПК-24);
- 23) способностью разработки планов, программ и методик проведения испытаний электротехнических и электроэнергетических устройств и систем (ПК-25);

- 24) способностью определять эффективные производственно-технологические режимы работы объектов электроэнергетики и электротехники (ПК-26);
- 25) способностью к монтажу, регулировке, испытаниям, наладке и сдаче в эксплуатацию электроэнергетического и электротехнического оборудования (ПК-27);
- 26) способностью к проверке технического состояния и остаточного ресурса оборудования и организации профилактических осмотров и текущего ремонта (ПК-28):
- 27) способностью подготовке технической документации на ремонт, к составлению заявок на оборудование и запасные части (ПК-29);
- 28) способностью к составлению инструкций по эксплуатации оборудования и программ испытаний (ПК-30).

Компетентностно-формирующая часть учебного плана, определяющая этапы формирования компетенций дисциплинами учебного плана, представлена в *приложении* $1\ \kappa$ $O\Pi O\Pi$.

5. УЧЕБНЫЙ ПЛАН И КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Учебный план определяет перечень и последовательность освоения дисциплин, практик, промежуточной и государственной итоговой аттестаций, их трудоемкость в зачетных единицах и академических часах, распределение контактной работы обучающихся с преподавателем (в том числе лекционные, практические, лабораторные виды занятий, консультации) и самостоятельной работы обучающихся.

Календарный учебный график определяет сроки и периоды осуществления видов учебной деятельности и периоды каникул.

Учебный план и календарный учебный график представлены в приложении 2 к ОПОП.

6. РАБОЧИЕ ПРОГРАММЫ ДИСЦИПЛИН

Аннотации всех учебных дисциплин представлены в приложении 3 к ОПОП.

7. ПРОГРАММЫ ПРАКТИК

Аннотации всех практик (включая НИР) представлены в приложении 4 к ОПОП.

8. ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ

Государственная итоговая аттестация является обязательной и осуществляется после освоения всех предусмотренных образовательной программой дисциплин и практик в полном объеме. Государственная итоговая аттестация включает в себя подготовку к защите и защиту выпускной квалификационной работы.

9. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Фонды оценочных средств представлены в приложении 5 к ОПОП.

10. ФАКТИЧЕСКОЕ РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ

Кадровое обеспечение образовательного процесса приведено в приложении 6 к ОПОП.

Руководитель образовательной программы: Румянцев Михаил Юрьевич, зав. кафедрой, к.т.н., с.н.с. Результаты деятельности представлены:

- 1. Румянцев М.Ю., Захарова Н.Е., Сигачев С.И., Сизякин А.В. Применение высокоскоростных электротурбомашин малой мощности на летательных аппаратах. Материалы X Всероссийской научно-технической конференции «Научные чтения по авиации, посвященные памяти Н.Е. Жуковского». М. ВВА им. Профессора Н.Е. Жуковского и Ю.А. Гагарина, 2013, стр.113-115.
- 2. Румянцев М.Ю., Мыцык Г.С. Машино-электронные генерирующие системы для автономных объектов малой мощности. Актуальные проблемы российской космонавтики: Труды XXXVIII академических чтений по космонавтике. Москва, январь 2014 г./Под общей редакцией А.К. Медведевой. М.: Комиссия РАН по разработке научного наследия пионеров освоения космического пространства, 2014 г.- стр. 648-649.
- 3. Румянцев М.Ю., Сигачев С.И., Сизякин А.В. Микротурбинные источники электрической энергии для перспективных летательных аппаратов. Материалы XI Всероссийской научно-технической конференции «Научные чтения по авиации, посвященные памяти Н.Е. Жуковского». М. ВВА им. Профессора Н.Е. Жуковского и Ю.А. Гагарина, 2014.
- 4. Румянцев М.Ю., Сигачев С.И., Захарова Н.Е. Применение лепестковых газодинамических подшипников в турбогенераторных агрегатах малой мощности. Транспортные средства и энергетические установки. 2014, № 4(22), том 1. М.: Известия МГТУ «МАМИ». С.61-67.
- 5. Румянцев М.Ю., Сигачев С.И., Захарова Н.Е. Высокоскоростные газодинамические лепестковые подшипники с перекрывающимися лепестками. Сборник трудов VIII Международной научно-практической конференции «Информационные и коммуникационные технологии в образовании, науке и производстве» Протвино, Управление образования и науки Администрации г. Протвино, 23-27 июня 2014 г., стр. 923-927.
- 6. Румянцев М.Ю., Грибин В.Г., Грузков С.А., Серков С.А., Сигачев С.И. Распределённая генерация тепла и электричества для труднодоступных районов на основе инновационных паровых турбогенераторов. Neftegaz.ru № 1-2, 2015, с. 20-25.
- 7. Румянцев М.Ю., Берилов А.В., Грибин В.Г., Серков С.А., Сигачев С.И. Высокоскоростные турбогенераторы для автономных систем малой распределённой энергетики. Промышленная энергетика, N 5, 2015, с. 31-38.
- 8. Румянцев М.Ю., Грибин В.Г., Грузков С.А., Серков С.А., Сигачев С.И. Технология распределённой когенерации на основе паротурбинных мультитопливных энергетических установок малой мощности. Технология машиностроения, № 6, 2015, с. 64-68.
- 9. Румянцев М.Ю., Грибин В.Г., Грузков С.А., Серков С.А., Сигачев С.И. Отечественные паротурбинные энергоустановки для систем малой распределённой энергетики. Сборник трудов XII Международной научно-практической конференции «Возобновляемая и малая энергетика 2015» и коммуникационные технологии в образовании, науке и производстве» Москва, 2015, стр. 228-231.
- 10. Мыцык Г.С., Румянцев М.Ю., Берилов А.В., Сизякин А.В. Хлаинг Мин У. Машинно-вентильный генератор постоянного тока. Опубл. 10.06.2015 Б.И. №16
- 11. Руководитель НИР «Разработка и исследование микротурбинных энергоузлов воздушных судов с повышенным уровнем электрификации» (шифр «Комплект МКТ-ЭУ»).
- 12. Руководитель ОКР «Изготовление и поставка технологического прибора электропитания подводных аппаратов для комплекса «Александрит ИПСУМ». Договор № 2116150, 10.2015.
- 13. Руководитель ОКР «Изготовление и поставка трех комплектов изделий для системы электропитания комплекса «Александрит ИПСУМ», Договор № 2153150, 10.2015

Для реализации образовательной программы используется материально-техническая база, обеспечивающая проведение всех предусмотренных учебным планом видов дисциплинарной и междисциплинарной подготовки, лабораторной, практической, научно-исследовательской и самостоятельной работы обучающихся.

Перечень материально-технического обеспечения включает в себя:

- лаборатории: М-603 «Системы электроснабжения автономных объектов», М-611 «Лаборатория силовой и управляющей электроники», М-617 «Лаборатория машинновентильных систем», М-610 «Микроконтроллерные системы управления», М-614 «Лаборатория энергоэффективных машинно-вентильных систем для автономных энергоустановок малой мощности» оснащенные современным оборудованием (в том числе сложным) и расходными материалами;
 - компьютерные (дисплейные) классы: М-609, М-610, М-619;
- аудитории, оборудованные мультимедийным и (или) презентационным оборудованием: М-606, М-609;
 - комплект лицензионного программного обеспечения.

Описание материально-технического обеспечения образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

Учебно-методическое обеспечение образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

ОБРАЗОВАТЕЛЬНУЮ ПРОГРАММУ СОСТАВИЛ:

Руководитель магистерской программы

Зав. кафедрой ЭКАОиЭТ с.н.с., к.т.н.

Зав. кафедрой ЭКАОиЭТ с.н.с., к.т.н.

Директор института электротехники профессор, к.т.н.

СОГЛАСОВАНО:

Первый проректор – проректор по учебной работе

Начальник учебного управления

Начальник отдела методического обеспечения и управления качеством образования

М.Ю. Румянцев

М.Ю. Румянцев

С.А. Грузков

Т.А. Степанова

Д.А. Иванов

А.В. Носов