Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский университет «МЭИ»

Институт электроэнергетики

СОГЛАСОВАНА
ПАО «РусГидромовиная гидоогования»
И.О. Председателя Правнения
Б.Б. Богуш

Русгидро

Русгидро

Тентразания

Тенерального

директора

Русгидро

Тентразания

Тенерального

Т

решением Ученого совета МЭИ
от «23» 03 2015 г. № 04/18
Ректор Иссельной АН.Д. Рогалев

ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Направление подготовки: 13.04.02 Электроэнергетика и электротехника

Программа подготовки: Гидроэнергетические установки

Тип: прикладная

Вид(ы) профессиональной деятельность(и): проектно-конструкторская

Квалификация выпускника: магистр

Москва 2015

общие положения

Основная профессиональная образовательная программа (далее – образовательная программа), реализуемая в МЭИ, представляет собой комплект документов, разработанный и утвержденный в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) с учетом профессиональных стандартов.

Образовательная программа представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных средств, методических материалов.

Образовательная программа позволяет осуществлять обучение инвалидов и лиц с ограниченными возможностями здоровья. С этой целью в вариативную часть образовательной программы, при необходимости, включаются специализированные адаптационные и адаптированные дисциплины и практики.

Нормативные документы для разработки образовательной программы

Нормативную правовую базу разработки образовательной программы составляют:

Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с последующими дополнениями и изменениями);

«Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры», утвержденный приказом Минобрнауки России от 19 декабря 2013 г. № 1367 (с последующими дополнениями и изменениями);

Федеральный государственный образовательный стандарт по **13.04.02** Электроэнергетика и электротехника высшего образования, утвержденный приказом Министерства образования и науки Российской Федерации от «21»ноября 2014г. №1500;

Нормативно-методические документы Минобрнауки России;

Устав МЭИ;

Локальные акты МЭИ.

1. ОБЩАЯ ХАРАКТЕРИСТИКА ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цель образовательной программы формирование у студента общекультурных и общепрофессиональных компетенций, основанных на общенаучных знаниях, позволяющих ему успешно трудиться в избранной сфере деятельности, способствующих социальной мобильности и устойчивости на рынке труда, и профессиональных компетенций для проектно-конструкторского вида деятельности в соответствии с требованиями ФГОС ВО по данному направлению подготовки

Форма обучения: очная

Объем программы: 120 зачетных единиц.

Сроки получения образования: 2 года

Использование электронного обучения, дистанционных образовательных технологий и сетевой формы при реализации образовательной программы.

Реализация программы магистратуры с использованием дистанционных образовательных технологий не предусмотрена.

Язык обучения: русский.

Требования к абитуриенту *магистратуры*: абитуриент должен иметь документы в соответствии с Правилами приема в МЭИ, которые устанавливаются решением Ученого совета МЭИ, и пройти вступительные испытания согласно утвержденной программе.

2. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Область профессиональной деятельности выпускника:

Совокупность технических средств, способов и методов человеческой деятельности для производства, преобразования, применения электрической энергии, управления потоками энергии и воды, разработки и изготовления элементов, устройств и систем, реализующих эти процессы.

Объекты профессиональной деятельности выпускника:

гидроэнергетические установки, гидроэлектростанции и комплексы на базе иных возобновляемых источников энергии.

Виды профессиональной деятельности выпускника: проектно-конструкторская.

Задачи профессиональной деятельности выпускника:

проектно-конструкторская деятельность:

разработка и анализ обобщенных вариантов решения проблемы;

прогнозирование последствий принимаемых решений;

нахождение компромиссных решений в условиях многокритериальности и неопределенности;

планирование реализации проекта;

оценка технико-экономической эффективности принимаемых решений.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения образовательной программы у выпускника должны быть сформированы следующие компетенции:

Общекультурные (универсальные) компетенции:

способностью к абстрактному мышлению, обобщению, анализу, систематизации и прогнозированию (ОК-1);

способностью действовать в нестандартных ситуациях, нести ответственность за принятые решения (ОК-2);

способностью к саморазвитию, самореализации, использованию творческого потенциала (ОК-3).

Общепрофессиональные компетенции:

способностью формулировать цели и задачи исследования, выявлять приоритеты решения задач, выбирать и создавать критерии оценки (ОПК-1);

способностью применять современные методы исследования, оценивать и представлять результаты выполненной работы (ОПК-2);

способностью использовать иностранный язык в профессиональной сфере (ОПК-3);

способностью использовать углубленные теоретические и практические знания, которые находятся на передовом рубеже науки и техники в области профессиональной деятельности (ОПК-4).

Профессиональные компетенции:

способностью планировать и ставить задачи исследования, выбирать методы экспериментальной работы, интерпретировать и представлять результаты научных исследований (ПК-1);

способностью оценивать риск и определять меры по обеспечению безопасности разрабатываемых новых технологий, объектов профессиональной деятельности (ПК-3);

способностью формулировать технические задания, разрабатывать и использовать средства автоматизации при проектировании и технологической подготовке производства (ПК-6);

способностью применять методы анализа вариантов, разработки и поиска компромиссных решений (ПК-7);

способностью применять методы создания и анализа моделей, позволяющих прогнозировать свойства и поведение объектов профессиональной деятельности (ПК-8);

способностью выбирать серийные и проектировать новые объекты профессиональной деятельности (ПК-9);

способностью управлять проектами разработки объектов профессиональной деятельности (ПК-10);

способностью осуществлять технико-экономическое обоснование проектов (ПК-11);

способностью управлять действующими технологическими процессами, обеспечивающими выпуск продукции, отвечающей требованиям стандартов и рынка (ПК-12);

способностью к реализации мероприятий по экологической безопасности предприятий (ПК-18);

готовностью эксплуатировать, проводить испытания и ремонт технологического оборудования электроэнергетической и электротехнической промышленности (ПК-22);

готовностью применять методы и средства автоматизированных систем управления технологическими процессами электроэнергетической и электротехнической промышленности (ПК-23);

способностью принимать решения в области электроэнергетики и электротехники с учетом энерго- и ресурсосбережения (ПК-24);

способностью определять эффективные производственно-технологические режимы работы объектов электроэнергетики и электротехники (ПК-26);

способностью подготовке технической документации на ремонт, к составлению заявок на оборудование и запасные части (ПК-29);

способностью к составлению инструкций по эксплуатации оборудования и программ испытаний (ПК-30).

Компетентностно-формирующая часть учебного плана, определяющая этапы формирования компетенций дисциплинами учебного плана, представлена в *приложении* $1\ \kappa$ $O\Pi O\Pi$.

4. УЧЕБНЫЙ ПЛАН И КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Учебный план определяет перечень и последовательность освоения дисциплин, практик, промежуточной и государственной итоговой аттестаций, их трудоемкость в зачетных единицах и академических часах, распределение контактной работы обучающихся с преподавателем (в том числе лекционные, практические, лабораторные виды занятий, консультации) и самостоятельной работы обучающихся.

Календарный учебный график определяет сроки и периоды осуществления видов учебной деятельности и периоды каникул.

Учебный план и календарный учебный график представлен в приложении 2 к ОПОП.

5. РАБОЧИЕ ПРОГРАММЫ ДИСЦИПЛИН

Аннотации всех учебных дисциплин представлены в приложении 3 к ОПОП.

6. ПРОГРАММЫ ПРАКТИК

Аннотации всех практик (включая НИР) представлены в приложении 4 к ОПОП.

7. ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ

Государственная итоговая аттестация является обязательной и осуществляется после освоения всех предусмотренных образовательной программой дисциплин и практик в полном объеме. Государственная итоговая аттестация включает в себя подготовку к защите и защиту выпускной квалификационной работы.

8. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Фонды оценочных средств представлены в приложении 5 к ОПОП.

9. ФАКТИЧЕСКОЕ РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ

Кадровое обеспечение образовательного процесса приведено в *приложении* 6 к ОПОП *Руководитель образовательной программы*:

Тягунов Михаил Георгиевич, проф., д.т.н., профессор.

Основные результаты научной, научно-методической и творческой деятельности в соответствии с требованиями ФГОС ВО за последние 3 года:

- 1. Отчет о НИР «Разработка интеллектуального алгоритма управления работой ветроэлектростанции в составе автономной системы электроснабжения» по государственному контракту № 14.516.11.0009 от 18.03.2013, шифр «2013-1.6-14-516-0112-039»
- 2. Отчет о НИР «Разработка технологии обоснования параметров гибридных энергетических комплексов мощностью от 500 кВА на основе теплонасосных, дизельных, ветровых и гидравлических установок с новыми типами генераторов». Часть 4. по государственному контракту № 16.516.11.6110от 25.08.2011., шифр «2011-1.6-516-047-038»

Публикации по результатам научно-исследовательской деятельности направленности подготовки в ведущих отечественных и зарубежных рецензируемых журналах и изданиях, входящих в перечень ВАК России:

- 1. Васьков А.Г., Дерюгина Г.В., Тягунов М.Г., Чернов Д.А. Исследование моделей вертикального профиля ветра на территории Дальневосточного федерального округа // «Альтернативная энергетика и экология», 2015, № 10-11 (174-175). С. 63-73
- 2. Тягунов М.Г., Шуркалов П.С. Эффективность использования установок на основе возобновляемых источников энергии для зарядки электромобилей на территории России. // «Альтернативная энергетика и экология», 2015, № 10-11 (174-175).С. 107-117
- 3. Коваленко Е.В., Тягунов М.Г. Гибридные энергетические комплексы с когенерацией в изолированных энергетических системах . // «Альтернативная энергетика и экология», 2015, № 10-11 (174-175). С. 167-177
- 4. Зай Яр Лин, Тягунов М.Г. Оценка гидроэнергетического потенциала для геоинформационной системы возобновляемых источников энергии Республики Союз Мьянмы // Гидротехническое строительство, 2015, №7, с. 19-26
- 5. Иванов Н.А., Юсупов Т.М., Тягунов М.Г. Дополнительные возможности систем оперативного мониторинга технического состояния гидроагрегата. // Гидротехническое строительство, 2015, №7, c.46-50
- 6. Тягунов М.Г., Галка В.В., Гаврилова О.В. Модели и базы знаний об объектах и процессах гидроэнергетики. // Гидротехническое строительство, 2015, №7, с.51-55
- 7. Использование гибридных энергокомплексов на основе возобновляемых источников энергии в распределенной энергетике/ Васьков А.Г., Коваленко Е.А., Тягунов М.Г., Шарапов С.А. //Энергетик, 2014, №2, с. 25-27
- 8. Кафедра «Гидроэнергетика и возобновляемые источники энергии» НИУ МЭИ /Дерюгина Г.В., Тягунов М.Г., Шестопалова Т.А.// Энергетик, 2014, №2, с. 18-19

- 9. Управление ветроэнергетической установкой в локальной энергосистеме// Васьков А.Г., Дерюгина Г.В., Тягунов М.Г., Шарапов С.А.// Главный энергетик, 2014, №5, с. 63-69.
- 10. Васьков А.Г., Тягунов М.Г. Распределенные системы энергоснабжения на основе гибридных энергокомплексов с установками возобновляемой энергетики //Новое в российской электроэнергетике, 2013, № 4, с.6-11
- 11. Васьков А.Г., Тягунов М.Г. Оптимизация структуры гибридных энергетических комплексов с потребителями различного типа //Энергетик, 2013, №6, с.97-100
- 12. Тягунов М.Г., Шарапов С.А., Шуркалов П.С. Гибридные энергетические комплексы и алгоритмы управления ими //Вестник МЭИ, 2013, №4, с. 64-67
- 13. Шуркалов П.С., Тягунов М.Г. Возможности подзарядки электромобилей от установок на основе возобновляемых источников энергии //Вестник МЭИ, 2013, № 5, с.61-66
- 14. Системные свойства гибридных энергокомплексов на основе возобновляемых источников энергии // Афонин В.С., Васьков А.Г., Дерюгина Г.В., Тягунов М.Г., Шестопалова Т.А. // Энергобезопасность и энергосбережение, 2012, №2, с.20-27
- 15. Тягунов М.Г. Развитие энергетики возобновляемых источников на основе типовых гибридных комплексов в распределенных энергосистемах //Инноватика и экспертиза. Научные труды ФГБНУ НИИ РИНКЦЭ. –М.: ФГБНУ НИИ РИНКЦЭ, 2012. Вып. 2(9), с. 91-97

Выступления на национальных и международных конференциях по тематике направленности подготовки:

- 1. Девятая научно-техническая конференция «Гидроэнергетика. Новые разработки и технологии», 22-23 октября 2015 г., Санкт-Петербург
- 2. Международный Конгресс.Возобновляемая энергетика XXI век:энергетическая и экономическая эффективность (REENCON-XXI), 27-28 октября 2015, Москва http://reencon-xxi.ru/
- 3. Международная конференция «Развитие возобновляемой энергетики в СНГ»? 03.02.2015, Москва
- 4. Вторая Международная Конференция «Финансирование проектов по энергосбережению и возобновляемым источникам энергии (ВИЭ). Практика реализации энергосервисных контрактов в России и странах СНГ», 23 апреля 2015 г, Москва
- 5. Вторая Всероссийская научно-практическая конференция «Гидроэлектростанции в XXI веке», 21–22 мая 2015 г., п. Черемушки (СШ ГЭС)
- 6. Российско-Германский экспертный диалог на тему «Экономическая кооперация проблемы, возможности, сотрудничество», 22-23.06.2015, г.Целле (ФРГ)

Для реализации образовательной программы используется материально-техническая база, обеспечивающая проведение всех предусмотренных учебным планом видов дисциплинарной и междисциплинарной подготовки, лабораторной, практической, научно-исследовательской и самостоятельной работы обучающихся.

Перечень материально-технического обеспечения включает в себя:

- лаборатории «Возобновляемые источники энергии», оснащенные современным оборудованием;
 - компьютерные (дисплейные) классы;
 - аудитории, оборудованные мультимедийным и презентационным оборудованием;
 - комплект лицензионного программного обеспечения.

Описание материально-технического обеспечения образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

Учебно-методическое обеспечение образовательной программы приведено соответствующих рабочих программах дисциплин и практик.

ОБРАЗОВАТЕЛЬНУЮ ПРОГРАММУ СОСТАВИЛ:

Профессор кафедры ГВИЭ

М.Г.Тягунов

Руководитель ОПОП Профессор кафедры ГВИЭ д.т.н., проф.

И. о. Зав. кафедрой ГВИЭ

Директор института ИЭЭ Д.т.н., чл.-кор.

СОГЛАСОВАНО:

Первый проректор – проректор по учебной работе

Начальник учебного управления

Начальник отдела методического обеспечения и управления качеством образования

М.Г.Тягунов

Р.М. Хазиахметов

П.А. Бутырин

Т.А. Степанова

Д.А. Иванов

А.В. Носов