Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

Институт Энергомашиностроения и механики

УТВЕРЖДЕНА
рецением Ученого совета МЭИ
от «Зэ» 201 № 05// У
Ректор И Д. Рогалев

ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ

Направление подготовки: 15.04.06 Мехатроника и робототехника

Программа подготовки: Разработка компьютерных технологий управления и математического моделирования в робототехнике и мехатронике

Тип: академическая

Вид профессиональной деятельности: научно-исследовательская; проектно-конструкторская

Квалификация выпускника: магистр

Москва 2015

1. ОБШИЕ ПОЛОЖЕНИЯ

Основная профессиональная образовательная программа (далее – образовательная программа), реализуемая в МЭИ, представляет собой комплект документов, разработанный и утвержденный в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) с учетом профессиональных стандартов.

Образовательная программа представляет собой комплекс основных характеристик образования (объем, содержание, планируемые результаты), организационно-педагогических условий, форм аттестации, который представлен в виде общей характеристики программы, учебного плана, календарного учебного графика, рабочих программ дисциплин (модулей), программ практик, оценочных средств, методических материалов.

Образовательная программа позволяет осуществлять обучение инвалидов и лиц с ограниченными возможностями здоровья. С этой целью в вариативную часть образовательной программы, при необходимости, включаются специализированные адаптационные и адаптированные дисциплины и практики.

Нормативные документы для разработки образовательной программы

Нормативную правовую базу разработки образовательной программы составляют:

Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (с последующими дополнениями и изменениями);

«Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры», утвержденный приказом Минобрнауки России от 19 декабря 2013 г. № 1367 (с последующими дополнениями и изменениями);

Федеральный государственный образовательный стандарт по направлению подготовки 15.04.06 Мехатроника и робототехника, утвержденный приказом Минобрнауки России от 21.11.2014 № 1491;

Нормативно-методические документы Минобрнауки России; Устав МЭИ; локальные акты МЭИ:

Профессиональные стандарты:

40.008 «Специалист по организации и управлению научно-исследовательскими и опытноконструкторскими работами»;

40.011 «Специалист по научно-исследовательским и опытно-конструкторским разработкам»;

40.069 «Специалист по наладке и испытаниям технологического оборудования механосборочного производства»;

40.083 «Специалист по компьютерному проектированию технологических процессов»

40.090 «Специалист по контролю качества механосборочного производства»

2. ОБШАЯ ХАРАКТЕРИСТИКА ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Цель образовательной программы

Обеспечение фундаментального разностороннего качественного образования по направлению магистратуры 15.04.06 Мехатроника и робототехника на основе передовых достижений науки и практики в профессиональной области с использованием прогрессивных образовательных технологий.

Форма обучения: очная

Объем программы: 120 зачетных единиц.

Сроки получения образования: 2 года.

Используются электронные формы обучения, дистанционные образовательные технологии при реализации образовательной программы.

Язык обучения: русский.

Требования к абитуриенту абитуриент должен иметь документы в соответствии с Правилами приема в МЭИ, которые устанавливаются решением Ученого совета МЭИ, и

3. ХАРАКТЕРИСТИКА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

3.1. Область профессиональной деятельности выпускника:

Область профессиональной деятельности выпускников, освоивших программу магистратуры, включает разработку новых методов управления, обработки информации и поиск новых конструктивных решений мехатронных и робототехнических систем широкого назначения, их подсистем и отдельных модулей, проведение исследований в области мехатроники, робототехники, теории управления и методов искусственного интеллекта.

- **3.2. Объекты профессиональной деятельности** выпускника по программе «Разработка компьютерных технологий управления и математического моделирования в робототехнике и мехатронике»:
- —мехатронные и робототехнические системы, включающие информационно-сенсорные, исполнительные и управляющие модули, их математическое, алгоритмическое и программное обеспечение, методы и средства их проектирования, моделирования, экспериментального исследования и проектирования;
- —проведение теоретических и экспериментальных исследований мехатронных и робототехнических систем различного назначения.
- **3.3.** Виды профессиональной деятельности выпускника: научно-исследовательская, проектно-конструкторская.

3.4. Задачи профессиональной деятельности выпускника:

- —анализ научно-технической информации, отечественного и зарубежного опыта в области разработки и исследования мехатронных и робототехнических систем, изучение новых методов теории автоматического управления, искусственного интеллекта и других научных направлений, составляющих теоретическую базу мехатроники и робототехники, составление и публикация обзоров и рефератов;
- —проведение теоретических и экспериментальных исследований в области разработки новых образцов и совершенствования существующих мехатронных и робототехнических систем, их модулей и подсистем, поиск новых способов управления и обработки информации с применением методов искусственного интеллекта, нечёткой логики, методов мультиагентного управления, искусственных нейронных и нейро-нечётких сетей;
- —проведение патентных исследований, сопровождающих разработку новых мехатронных и робототехнических систем, с целью защиты объектов интеллектуальной собственности, полученных результатов исследований и разработок;
- —разработка экспериментальных образцов мехатронных и робототехнических систем, их модулей и подсистем с целью проверки и обоснования основных теоретических и технических решений, подлежащих включению в техническое задание на выполнение опытно-конструкторских работ;
- —организация и проведение экспериментов на действующих мехатронных и робототехнических системах, их подсистемах и отдельных модулях с целью определения их эффективности и определения путей совершенствования, обработка результатов экспериментальных исследований с применением современных информационных технологий;
- —подготовка отчётов, научных публикаций и докладов на научных конференциях и семинарах, участие во внедрении результатов исследований и разработок в практику.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения образовательной программы у выпускника должны быть сформированы следующие компетенции:

Общекультурные (универсальные) компетенции:

- 1) способность совершенствовать и развивать свой интеллектуальный и общекультурный уровень (ОК-1);
- 2) способность к самостоятельному обучению с помощью современных информационных технологий новым методам исследования, к постоянному обновлению и расширению своих знаний, к изменению в случае необходимости научного и научно-производственного профиля своей профессиональной деятельности (ОК-2);
- 3) способность использовать в практической деятельности новые знания и умения, как относящиеся к своему научному направлению, так и, в новых областях знаний, непосредственно не связанных с профессиональной сферой деятельности (ОК-3);
- 4) готовность использовать на практике приобретённые умения и навыки в организации исследовательских и проектных работ, выполняемых малыми группами исполнителей (ОК-4).

Общепрофессиональные компетенции:

- 1) способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики (ОПК-1);
- 2) владение в полной мере основным физико-математическим аппаратом, необходимым для описания и исследования разрабатываемых систем и устройств (ОПК-2);
- 3) владение современными информационными технологиями, готовность применять современные и специализированные средства автоматизированного проектирования и машинной графики при проектировании систем и их отдельных модулей, знать и соблюдать основные требования информационной безопасности (ОПК-3);
- 4) готовность собирать, обрабатывать, анализировать и систематизировать научнотехническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии в своей профессиональной деятельности (ОПК-4);
- 5) способность использовать методы современной экономической теории при оценке эффективности разрабатываемых и исследуемых систем и устройств, а также результатов своей профессиональной деятельности (ОПК-5);
- 6) способность пользоваться основными методами защиты производственного персонала и населения от возможных последствий аварий, катастроф, стихийных бедствий (ОПК-6).

Профессиональные компетениии:

научно-исследовательская деятельность:

- 1) способность составлять математические модели мехатронных и робототехнических систем, их подсистем, включая исполнительные, информационно-сенсорные и управляющие модули, с применением методов формальной логики, методов конечных автоматов, сетей Петри, методов искусственного интеллекта, нечёткой логики, генетических алгоритмов, искусственных нейронных и нейро-нечётких сетей (ПК-1);
- 2) способность использовать имеющиеся программные пакеты и, при необходимости, разрабатывать новое программное обеспечение, необходимое для обработки информации и управления в мехатронных и робототехнических системах, а также для их проектирования (ПК-2);
- 3) способность разрабатывать экспериментальные макеты управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем и проводить их исследование с применением современных информационных технологий (ПК-3);
- 4) способность осуществлять анализ научно-технической информации, обобщать отечественный и зарубежный опыт в области мехатроники и робототехники, средств автоматизации и управления, проводить патентный поиск (ПК-4);
- 5) способность разрабатывать методики проведения экспериментов и проводить эксперименты на действующих макетах и образцах мехатронных и робототехнических систем и их подсистем, обрабатывать результаты с применением современных информационных технологий и технических средств (ПК-5);

- 6) готовность к составлению аналитических обзоров и научно-технических отчётов по результатам выполненной работы, в подготовке публикаций по результатам исследований и разработок (ПК-6);
- 7) способность внедрять на практике результаты исследований и разработок, выполненных индивидуально и в составе группы исполнителей, обеспечивать защиту прав на объекты интеллектуальной собственности (ПК-7);

проектно-конструкторская деятельность:

- 8) готовность к руководству и участию в подготовке технико-экономического обоснования проектов создания мехатронных и робототехнических систем, их подсистем и отдельных модулей (ПК-8)
- 9) способность к подготовке технического задания на проектирование мехатронных и робототехнических систем, их подсистем и отдельных устройств с использованием стандартных исполнительных и управляющих устройств, средств автоматики, измерительной и вычислительной техники, а также новых устройств и подсистем (ПК-9)
- 10) способность участвовать в разработке конструкторской и проектной документации мехатронных и робототехнических систем в соответствии с имеющимися стандартами и техническими условиями (ПК-10)
- 11) готовность разрабатывать методику проведения экспериментальных исследований и испытаний мехатронной или робототехнической системы, способность участвовать в проведении таких испытаний и обработке их результатов (ПК-11)

организационно-управленческая деятельность:

12) способность организовывать работу малых групп исполнителей (ПК-12)

Компетентностно-формирующая часть учебного плана, определяющая этапы формирования компетенций дисциплинами учебного плана, представлена в приложении 1 к ОПОП.

4. УЧЕБНЫЙ ПЛАН И КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

Учебный план и календарный учебный график представлены в приложении 2 к ОПОП.

5. РАБОЧИЕ ПРОГРАММЫ ДИСЦИПЛИН

Аннотации всех учебных дисциплин представлены в приложении 3 к ОПОП.

6. ПРОГРАММЫ ПРАКТИК

Аннотации всех практик (включая НИР) представлены в приложении 4 к ОПОП.

7. ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ

Государственная итоговая аттестация является обязательной и осуществляется после освоения всех предусмотренных образовательной программой дисциплин и практик в полном объеме. Государственная итоговая аттестация включает в себя подготовку к защите и защиту выпускной квалификационной работы.

8. ФОНДЫ ОЦЕНОЧНЫХ СРЕДСТВ

Фонды оценочных средств представлены в приложении 5 к ОПОП.

9. ФАКТИЧЕСКОЕ РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ

Кадровое обеспечение образовательного процесса приведено в приложении 6 к ОПОП.

Руководитель образовательной программы профессор кафедры теоретической механики и мехатроники (ТММ), д.ф.-м.н. А.И. Кобрин.

Основные результаты научной, научно-методической и творческой деятельности:

- Kobrin A. I., Ganin P.A., Belousov M.C. Simulation Manipulator Based on Step Motors FESTO / // DAAAM International Scientific Book 2015. ISSN 1726-9687. — 2015. — P. 127–134.
- 2. Александров В.А., Кирик К., Кобрин А. Программное обеспечение комплекса аппаратного моделирования алгоритмов группового управления // Trends in Applied Mechanics and Mechatronics / Под ред. М. Н. Кирсанов. Т. 1. Инфра-М Москва, 2015. С. 66–69.

- 3. Аведиков Г.Е., Жмакин С.И., Ибрагимов В.С., Иванов А.В., Кобрин А.И. и др. Экзоскелет: Конструкция, управление // В сборнике: XII Всероссийское совещание по проблемам управления. Институт проблем управления им. В.А. Трапезникова РАН. 2014. С. 84-90
- 4. Александров В.А., Кирик К.А., Кобрин А.И. Коллективно-ориентированные мобильные роботы для исследования алгоритмов группового управления // Машиностроение. 2014. № 1. С. 70-76.
- 5. Кобрин А.И. Принцип максимальности производства энтропии в задаче перехода движущихся механизмов в фазу двойной опоры//Вестник МЭИ. 2013. № 4. С. 25-29.
- 6. Александров В.А., Кирик К.А., Кобрин А.И. Разрешение конфликтных ситуаций в коллективе автономных аппаратов // Известия Волгоградского государственного технического университета. 2013. Т. 19. № 24 (127). С. 6-10.

Научно-исследовательские проекты:

Разработка системы ориентации, навигации и управления движением мобильного локомоционного робота, грант Минобрнауки, номер гос. рег. 1201253788, 2012 — 2014 гг. (исп.)

Разработка новых методов оценки состояния элементов конструкций и математических моделей механических, робототехнических и мехатронных систем, грант Минобрнауки, гос. рег. № 01201253776, 2012 — 2014 гг. (исп.)

Для реализации образовательной программы используется материально-техническая база, обеспечивающая проведение всех предусмотренных учебным планом видов дисциплинарной и междисциплинарной подготовки, лабораторной, практической, научно-исследовательской и самостоятельной работы обучающихся.

Перечень материально-технического обеспечения включает в себя:

- лаборатории центра технологической поддержки образования, оснащенные современным исследовательским оборудованием и расходными материалами;
- лаборатории центра робототехники, оснащенные современным комплектом мобильных роботов – манипуляторов;
 - аудитории, оборудованные мультимедийным и (или) презентационным оборудованием;
 - комплект лицензионного программного обеспечения.

Описание материально-технического обеспечения образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

Учебно-методическое обеспечение образовательной программы приведено в соответствующих рабочих программах дисциплин и практик.

ОБРАЗОВАТЕЛЬНУЮ ПРОГРАММУ СОСТАВИЛ:

Зав. кафедрой ТММ, д.т.н.

Руководитель магистерской программы профессор кафедры ТММ д.ф.-м.н., проф.

Директор института ЭнМИ к.т.н.

согласовано:

Первый проректор – проректор по учебной работе

Начальник учебного управления

Начальник отдела методического обеспечения и управления качеством образования

7 И.В. Меркурьев

А.И. Кобрин

С.А. Серков

Т.А. Степанова

Д.А. Иванов

А.В. Носов

6