Научные разработки в области роботизированных комплексов для отраслей экономики

Содержание

Для перехода на выбранную разработку нажмите по заголовку на слайде «Содержание»

Устройства

- 1. Робототехнический комплекс для широкоформатной 3D-печати деталей сверхбольших размеров
- 2. Робот-электромонтер
- 3. Универсальный мобильный высокоманёвренный робототехнический комплекс
- 4. Системы управления движением новых мобильных роботов, оснащенных сферическими и омниколесами
- 5. Системы управления четвероногим шагающими роботами с трехзвенной конструкцией ног

Программно-аппаратный комплекс

6. Система менеджмента поголовья животных и управления молочным производством «Умная ферма 4.0»

Содержание

Для перехода на выбранную разработку нажмите по заголовку на слайде «Содержание»

Программное обеспечение

- 7. ПО «CloudBots» для мониторинга состояния городской мобильности и управления беспилотными платформами
- 8. Программное обеспечение для управления движением новых мобильных роботов, оснащенных сферическими и омни-колесами
- 9. Программное обеспечение для управления движением четвероногих шагающих роботов
- 10. Система временных рассуждений для интеллектуальной системы управления автоматизированным парковочным комплексом sPARK
- 11. Программно-аппаратный комплекс для контроля, анализа и управления установкой доильной роботизированной

Национальные проекты технологического лидерства (НПТЛ)

«Новые атомные и энергетические технологии» – энергетика. Направлен на расширение присутствия России на международном рынке атомных и смежных разработок, поставки отечественного оборудования предприятиям ТЭК.

«Беспилотные авиационные системы» – роботы и беспилотники. Включает разработку и серийное производство БАС и комплектующих, развитие необходимой инфраструктуры.

«Промышленное обеспечение транспортной мобильности» – транспорт. Нацелен на поддержку производства самолётов и вертолётов, судов и судового оборудования, инновационного транспорта, а также кадровое обеспечение развития транспорта.

«Средства производства и автоматизации» – промышленность. Включает в себя федеральные проекты по развитию станкоинструментальной промышленности, промышленной робототехники и автоматизации производства, литейного и термического оборудования.

«Новые материалы и химия» – материалы. Запланировано создание новых производств и центров компетенций, увеличение добычи дефицитного сырья, развитие технологий.

«Развитие многоспутниковой орбитальной группировки» — космос. Предусмотрено увеличение числа космических аппаратов, достижение независимости в космических сервисах и услугах.

Робототехнический комплекс для широкоформатной 3D-печати деталей сверхбольших размеров

Робототехнический комплекс для широкоформатной 3D-печати деталей сверхбольших размеров

Сведения о реализованном проекте

Назначение: 3D-печать деталей неограниченных размеров (на текущий момент по площади)

Технические характеристики:

- Рой роботов реализуют совместную печать (на текущий момент печать происходит в централизованном групповом режиме);
- Абсолютная погрешность позиционирования робота 0,03 мм (сейчас 0,5 мм);
- Печать различными материалами и различной топологии: пластик, угленаполненные материалы.

Научная новизна: уникальность заключается в 3D-печати деталей неограниченных размеров за счет роя колесных роботов.

Концепт-арт печати самолета роем роботом

Робототехнический комплекс для широкоформатной 3D-печати деталей сверхбольших размеров

Потенциальное применение

Уровень готовности (TRL №5): разработан прототип комплекса из двух роботов, проводящий совместную печать деталей в размерах больше самих роботов по площади (на данный момент напечатана балка длинной 3 м); Получен патент RU 2585703 C2 «ТРЕХМЕРНЫЙ ПРИНТЕР» на кинематическую схему; идет разработка прототипа, способного обеспечить неограниченную печать также по высоте.

Эффекты от внедрения: уменьшение стоимости и сроков производства деталей сверхбольших размеров для аэрокосмической отрасли, промышленности, транспорта и энергетики

Основные заказчики:

ГК «Ростех», АО «ОСК» и компании производители крупногабаритных деталей для электроэнергетики и транспортного комплекса

Внешний вид прототипа комплекса

Робот-электромонтер

Робот-электромонтер

Сведения о планируемом проекте

Назначение: роботизированная платформа для повышения безопасности и эффективности дежурного оперативного персонала на электрических подстанциях

Функции:

- 1. Выезд на место аварии;
- 2. Оценка ситуации;
- 3. Устранение малых неисправностей;
- 4. Обеспечение проведения ремонтных работ;
- 5. Соблюдение техники безопасности;
- 6. Ведение отчетности и документации

Рисунок 1. Внешний вид демонстратора ПАК «Роботэлектромонтер»

Робот-электромонтер

Потенциальное применение

Уровень готовности ПАК (TRL №4): разработан демонстратор ПАК, идет разработка алгоритмов навигации и управления гусеничной платформой и многозвенного схвата

Эффекты от внедрения: сокращение требований к дежурному оперативному персоналу, повышение производительность и безопасность выполнения работ. В целевом видении - отсутствие оперативного персонала на ПС 35-500 кВ в РУ 0,4-10 кВ в нормальном эксплуатации; При дальнейшем режиме развитии технологии использование роботизированной платформы для манипуляции органами ручного управления на оборудовании АСУТП.

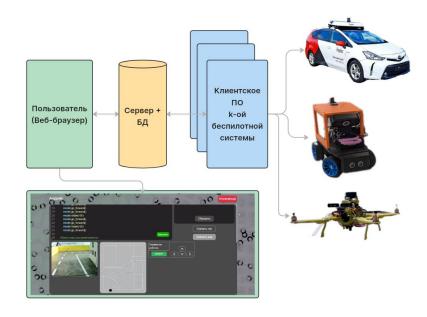
Основные заказчики:

ПАО «Россети», ПАО «Сибур Холдинг», ГК «Росатом» и другие энергетические компании.

Рисунок 2. Внешний вид демонстратора ПАК «Роботэлектромонтер»

ПО «CloudBots» для мониторинга состояния городской мобильности и управления беспилотными платформами

ПО «CloudBots» для мониторинга состояния городской мобильности и управления беспилотными платформами



Сведения о планируемом проекте

Назначение: мониторинг состояния городской мобильности

Функции:

- 1. Управление беспилотной системой (БС) в режиме оператора;
- 2. Программирование БС через редактор кода, встроенный в веб-интерфейс, или загрузка готового кода в БС (режим прошивки);
- 3. Получение пользователем телеметрии БС и видеопотока через веб-интерфейс;
- 4. Создание миссий для БС (режим миссий) (в разработке);
- 5. Контроль состояния и управление парком БС, входящих в единую информационную сеть, посредством режима администратора (в разработке).

Функциональная схема ПО «CloudBots»

ПО «CloudBots» для мониторинга состояния городской мобильности и управления беспилотными платформами

Потенциальное применение

Уровень готовности ПАК (TRL №5): разработано ПО, обеспечивающее 3 из 5 заявленных функций для наземных роботов (в разработке подключение к БпЛА), также в разработке режим миссий и режим администратора для контроля и управления парком БС.

Эффекты от внедрения: повышения эффективности работы с БС в различных сферах деятельности за счет удаленного подключения;

Отечественные или зарубежные аналоги: ArduPilot, ЭРА-ГЛОНАСС (АО «ГЛОНАСС»).

Основные заказчики:

ООО «Научные развлечения», ГК «Геоскан», компании, организующие городскую логистику.

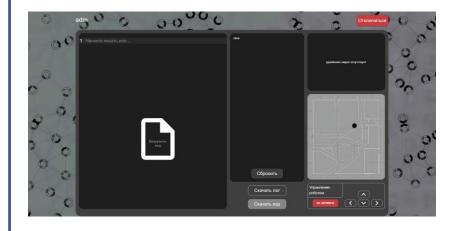


Рисунок 2. Внешний вид веб-интерфейса «CloudBots»

Контакты

Кафедра Радиотехнических систем

Заведующий кафедрой Роман Сергеевич Куликов

Универсальный мобильный высокоманёвренный робототехнический комплекс

Универсальный мобильный высокоманёвренный робототехнический комплекс

Сведения о планируемом проекте

Назначение: универсальный мобильный робототехнический комплекс предназначен для выполнения широкого спектра задач в закрытых помещениях.

Технические характеристики: робототехнический комплекс построен на базе платформы всенаправленного движения с меканум-колёсами, обеспечивающей абсолютную мобильность с минимальным радиусом поворота 0 метров и максимальной скоростью 1 м/с. Манипулятор имеет высоту рабочей области 1,1 метра и предназначен для работы на подготовленных поверхностях в помещениях.

Научная новизна: обеспечение уникальной маневренности в ограниченном пространстве.

Общий вид мобильного робототехнического комплекса с захватным устройством

Универсальный мобильный высокоманёвренный робототехнический комплекс

Потенциальное применение

Уровень готовности (TRL №5): разработка находится на стадии прототипа, готового для демонстрации основных функциональных возможностей.

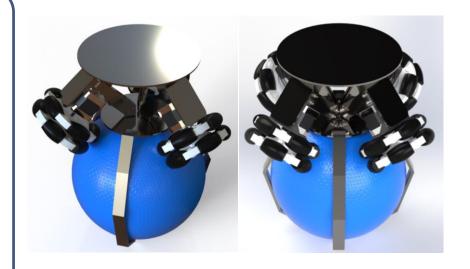
Эффекты от внедрения: внедрение комплекса обеспечивает автоматизацию складских операций, повышение производительности персонала и возможность удалённого выполнения санитарной обработки, дезинфекции и других опасных работ.

Основные заказчики: предприятия складской логистики, производственные компании и медицинские учреждения. Комплекс также может быть востребован организациями, занимающимися санитарной обработкой и дезинфекцией помещений.

Общий вид мобильного робототехнического комплекса с шестиступенном манипулятором

Системы управления движением новых мобильных роботов, оснащенных сферическими и омни-колесами

Системы управления движением новых мобильных роботов, оснащенных сферическими и омни-колесами



Сведения о планируемом проекте

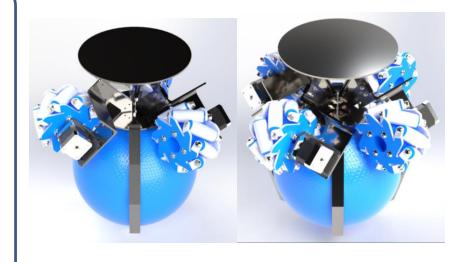
Назначение: в проекте разрабатываются системы управления мобильных роботов, оснащенных сферическими колесами и омниколесами, осуществляющие высокоточную навигацию и управление движением.

Технические характеристики: системы управления движением роботов, обеспечивающие погрешность позиционирования менее 10 см; Алгоритмы одометрической навигации для роботов, обеспечивающие ошибку определения положения робота не более 10 см.

Научная новизна: разрабатываются системы управления роботов, балансирующих на сферическом колесе, с произвольным количеством приводных омни- и меканум-колес.

3D-модели мобильной платформы, балансирующей на сферическом колесе, с различным количеством приводных омни-колес

Системы управления движением новых мобильных роботов, оснащенных сферическими и омни-колесами


Потенциальное применение

Уровень готовности (TRL 3): определены особенности конструкций роботов и разработаны математические модели их кинематики, подтвердившие возможность реализуемости таких роботов.

Эффекты от внедрения: разработка систем управления позволит обеспечить высокую точность позиционирования роботов, применяемых в сфере складской логистики, в задачах наблюдения и охраны территории производств или использования мобильных роботов в качестве беспилотных транспортных средств доставки.

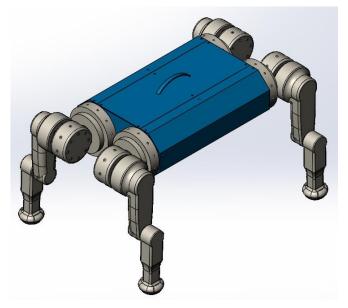
Основные заказчики:

ООО «ЯНДЕКС», ООО «Роббо», Инновационный центр «Сколково», Концерн «Автоматика»

3D-модели мобильной платформы, балансирующей на сферическом колесе, с различным количеством приводных меканум-колес

Системы управления четвероногим шагающими роботами с трехзвенной конструкцией ног

Системы управления четвероногим шагающими роботами с трехзвенной конструкцией ног


Сведения о планируемом проекте

Назначение: в рамках проекта разрабатываются системы управления четвероногими шагающими роботами с трехзвенной конструкцией ног, позволяющие осуществлять высокоточную навигацию и управление движением.

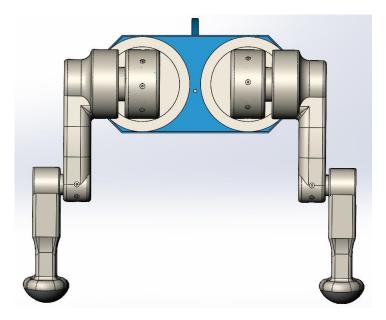
Технические характеристики: системы управления движением шагающего робота, обеспечивающие погрешность позиционирования менее 10 см.

Алгоритмы одометрической навигации для шагающего робота, обеспечивающие ошибку определения положения робота не более 10 см.

Научная новизна: разрабатываются системы управления четвероногим шагающим роботов с трехзвенной конструкцией ног.

3D-модель четвероногого шагающего робота с трехзвенной конструкцией ног

Системы управления четвероногим шагающими роботами с трехзвенной конструкцией ног


Потенциальное применение

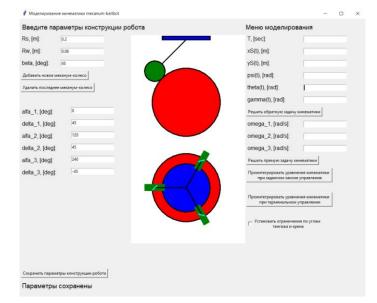
Уровень готовности (TRL 3): определены особенности конструкции робота и разработаны математические модели геометрии, кинематики и динамики четвероногого робота, подтвердившие возможность создания робота.

Эффекты от внедрения: разработка систем управления позволит обеспечить высокую точность позиционирования шагающих роботов, применяемых в сфере складской логистики, в задачах наблюдения и охраны территории производств или использования мобильных роботов в качестве беспилотных транспортных средств доставки.

Основные заказчики:

ООО «ЯНДЕКС», ООО «Роббо», Инновационный центр «Сколково», Концерн «Автоматика»

3D-модель четвероногого шагающего робота с трехзвенной конструкцией ног



Сведения о реализованном проекте

Назначение: ПО для моделирования движения мобильных роботов со сферическими колесами и омни-колесами, с возможностью конструкционной оптимизации.

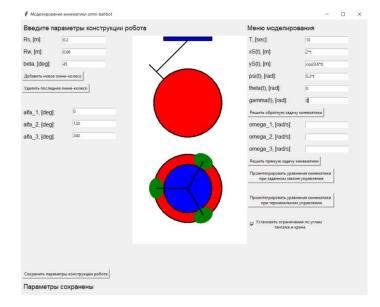
Функции:

- 1. Моделирование кинематики роботов со сферическими колесами и омни-колесами решение прямой и обратной задач кинематики робота (для оценки скоростных характеристик приводов колес необходимых для осуществления заданного движения)
- 2. Моделирование движений роботов при заданном управлении на кинематическом уровне (для оценки работоспособности и эффективности разрабатываемых законов управления движением роботов)
- 3. Расчета терминального управления

Функция 1. Меню модуля для моделирования кинематики для мобильных платформ, балансирующих на сферическом колесе, с произвольным количеством приводных меканум-колес (на примере 3 приводных колес)

Потенциальное применение

Уровень готовности программного продукта (TRL 4): подтверждена работоспособность разработанного ПО на моделировании тестовых движениях робота.


№ свидетельства государственной регистрации: 2025616765.

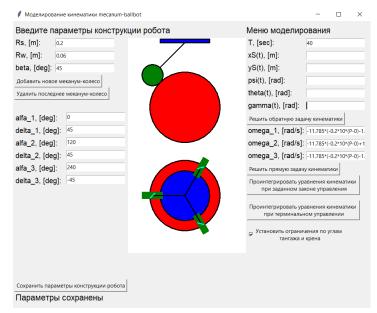
Эффекты от внедрения: развитие технологий моделирования движения мобильных роботов со сферическими колесами и омни-колесами.

Отечественные или зарубежные аналоги: программный комплекс «Компьютерная динамика» (РФ, г. Ижевск), САПР «SolidWorks»

Основные заказчики:

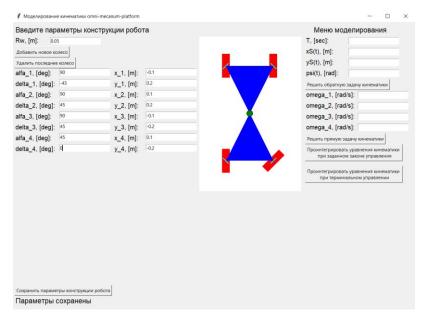
ООО «ЯНДЕКС», ООО «Роббо», Инновационный центр «Сколково», Концерн «Автоматика»

Функция 1. Меню модуля для моделирования кинематики для мобильных платформ, балансирующих на сферическом колесе, с произвольным количеством приводных омни-колес (на примере 3 приводных колес)

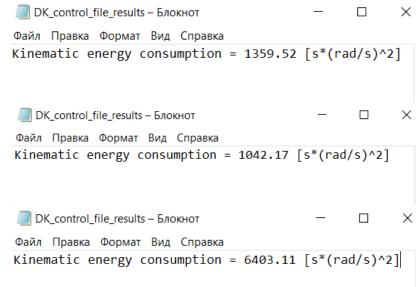


Нотация в программе при задании	Переменная в математической модели
функциональной зависимости от	кинематики при задании законов
переменных состояния	изменения управления
<u>'ť'</u>	t
<u>'</u> X,'	$x_{\mathcal{O}}$ или $x_{\mathcal{S}}$ (в зависимости от типа робота)
' <u>X</u> '	$y_{\mathcal{O}}$ или $y_{\mathcal{S}}$ (в зависимости от типа робота)
'P'	Ψ
'G'	γ
' <u>g</u> '	θ
'dx'	$\dot{x}_{\mathcal{O}}$ или $\dot{x}_{\mathcal{S}}$ (в зависимости от типа робота)
'dy'	$\dot{y}_{\mathcal{O}}$ или $\dot{y}_{\mathcal{S}}$ (в зависимости от типа робота)
'dP'	ψ
' <u>dG</u> '	γ̈́
'da'	θ

Функция 2. Нотация обозначений для задания законов управления в виде обратной связи по переменным состояния робота



Функция 2. Пример ввода законов управления в ПО (на примере меканум-платформы, балансирующей на сферическом колесе)

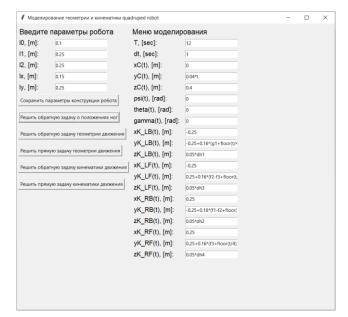


Функция 1. Меню модуля для моделирования кинематики для мобильных платформ, оснащенных произвольным количеством и конфигурацией омни- и/или меканум-колес (на примере робота с 3 меканум-колесами и 1 омни-колесом)

Функция 3. Результаты вычисления кинематических характеристик эффективности управления (на примере меканум-платформы; омни-платформы, балансирующей на сферическом колесе; робота с омни- и меканум-колесами)

Программное обеспечение для управления движением четвероногих шагающих роботов

Программное обеспечение для управления движением четвероногих шагающих роботов



Сведения о планируемом проекте

Назначение: ПО для моделирования движения четвероногого шагающего робота и оптимизации системы управления движением робота.

Функции:

- 1. Моделирование геометрии, кинематики и динамики движения четвероногих роботов с трехзвенной конструкцией ног;
- 2. Моделирование движений четвероногих роботов при заданном управлении;
- 3. Нахождение решения задачи о положениях звеньев ног робота;
- 4. Расчет для проверки статической и динамической устойчивости движений робота.

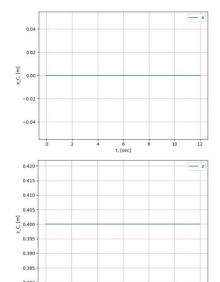
Функция 1 и 3. Меню модуля для моделирования геометрии и кинематики движения четвероногого шагающего робота

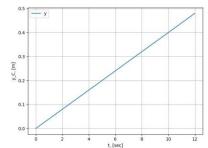
Программное обеспечение для управления движением четвероногих шагающих роботов

Потенциальное применение

Уровень готовности программного продукта (TRL 3): определена концепция ПО и разработаны часть модулей, входящих в ПО.

№ свидетельства государственной регистрации:

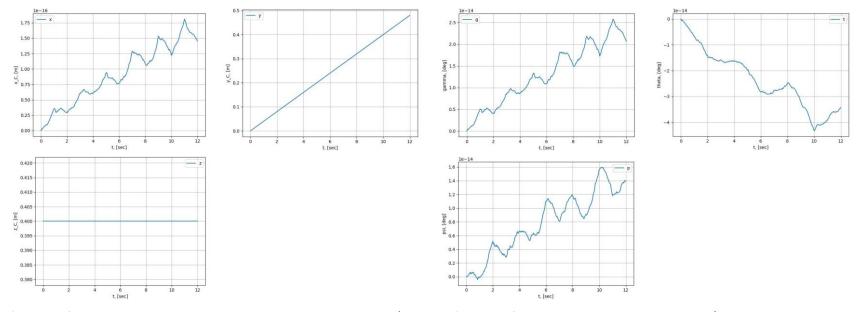

планируется регистрация


Эффекты от внедрения: развитие технологий моделирования движения четвероногих шагающих роботов.

Отечественные или зарубежные аналоги: САПР «SolidWorks».

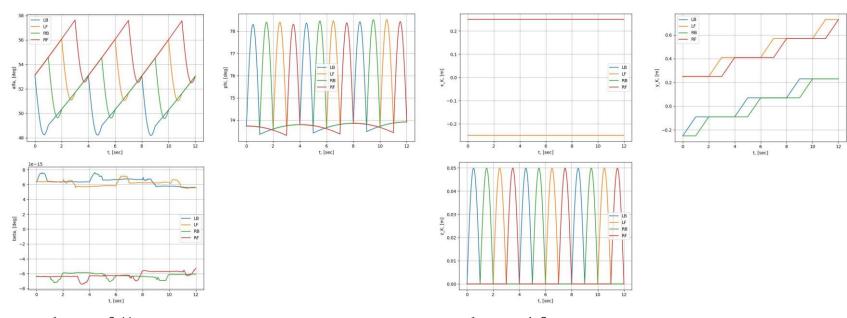
Основные заказчики:

ООО «ЯНДЕКС», ООО «Роббо», Инновационный центр «Сколково», Концерн «Автоматика»

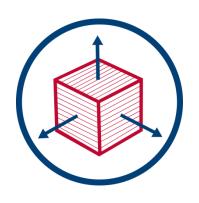

Функция 1. Пример задания требуемого движения четвероногого шагающего робота с постоянной ориентацией корпуса

Разработка программного обеспечения и систем управления движением четвероногих шагающих роботов

Функция 2. Координаты геометрического центра корпуса робота, полученные по результатам моделирования движения при заданном управлении на геометрическом/кинематическом уровнях


Функция 2. Углы ориентации корпуса робота, полученные по результатам моделирования движения при заданном управлении на геометрическом/кинематическом уровнях

Разработка программного обеспечения и систем управления движением четвероногих шагающих роботов


Функция 3. Углы поворота звеньев ног четвероного шагающего робота с трехзвенной конструкцией ног, полученные из аналитического решения задачи о положениях

Функция 1. Зависимости координат конечных точек ног шагающего робота

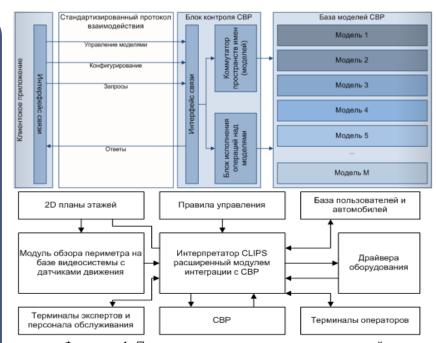
Контакты

Кафедра Робототехники, мехатроники, динамики и прочности машин

Заведующий кафедрой Меркурьев Игорь Владимирович

Система временных рассуждений для интеллектуальной системы управления автоматизированным парковочным комплексом sPARK

Система временных рассуждений для интеллектуальной системы управления автоматизированным парковочным комплексом sPARK



Сведения о реализованном проекте

Назначение: система временных рассуждений (СВР) предназначена для применения в составе широкого класса современных интеллектуальных систем, в которых требуется учитывать время и временные зависимости в данных и знаниях. Продукт эксплуатируется более чем на 100 объектах России и СНГ.

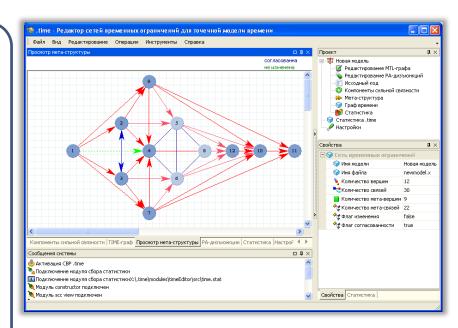
Функции:

- 1. Представление и хранение временной информации.
- 2. Поддержка временной согласованности проверка согласованности базы знаний при добавлении в нее новой информации.
- 3. Проверка истинности временных утверждений.
- 4. ответы на запросы, касающиеся временных аспектов знаний.

Функция 1. Представление и хранение временной информации системы автоматизированной парковки

Система временных рассуждений для интеллектуальной системы управления автоматизированным парковочным комплексом sPARK

Потенциальное применение


Уровень готовности программного продукта (TRL 9): СВР внедрена в состав программного комплекса sPARK, предназначенного для организации автоматизированных систем парковки автотранспорта.

№ свидетельства государственной регистрации: программа для ЭВМ № 2005610762

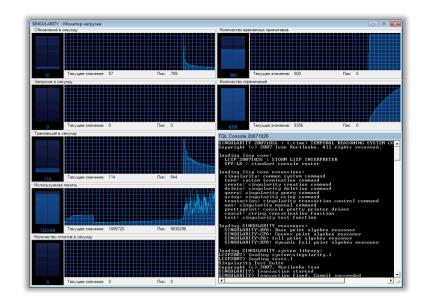
Эффекты от внедрения: снижение затрат на сопровождение системы, повышение эффективности и надежности системы за счет выявления аномальных действий клиентов и обслуживающего персонала парковки

Отечественные или зарубежные аналоги: CAME, Park City, Штрих-М, Designa.

Основные заказчики: ООО «ААМ Автоматик», ООО «КОМПАНИЯ «ААМ СИСТЕМЗ», компании организующее складскую логистику.

Функция 2. Поддержка временной согласованности

Система временных рассуждений для интеллектуальной системы управления автоматизированным парковочным комплексом sPARK



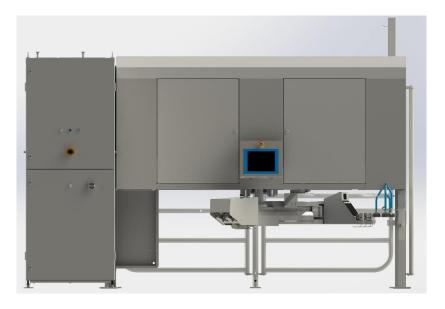
Функция 3. проверка истинности временных утверждений

Функция 4. Ответы на запросы, касающиеся временных аспектов знаний

Контакты

Кафедра Прикладной математики и искусственного интеллекта (ПМИИ)

Заведующий кафедрой Варшавский Павел Романович



Сведения о реализованном проекте

Назначение: робототехнические системы для доения - это специализированное робототехническое оборудование, предназначенное для использования на молочных фермах для автоматической дойки коров, диагностики и кормления животных.

Технические характеристики: напряжение: 230В, ток нагрузки: 20 А, степень защиты: IP54, средняя производительность: 1500-2000 литров в день, нагрузка на робота: до 75 коров.

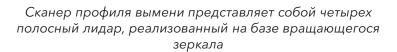
Научная новизна (уникальность): алгоритм управления робототехнической системой доильного робота и классификации сегментированных изображений по признакам в условиях постоянно меняющейся внешней среды с использованием методов компьютерного зрения.

3D-модель установки доильной роботизированной.


Потенциальное применение

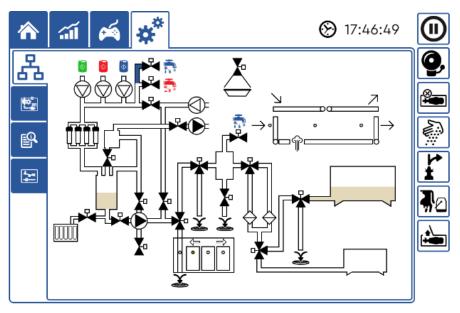
Уровень готовности (TRL №8): произведены испытания опытного образца с условиями эксплуатации, близкими к реальным.

Эффекты от внедрения: роботизированное доение позволяет экономить на количестве персонала за счет автоматизации процессов. Благодаря современной системе контроля, повышается уровень здоровья животных, снижается выбраковка, увеличивается экономическая эффективность фермы.


Основные заказчики:

ФГБНУ ФНАЦ ВИМ, ООО «Лейли Рус», ООО «Sokol Technology», ООО «НПО «Промышленный капитал», Группа компаний «ВИАТЭК» и другие поставщики сельскохозяйственной техники.

Рабочий орган манипулятора, оснащенный сканером профиля вымени и доильными стаканами



Лабораторный образец установки доильной роботизированной.

Локальная система управления осуществляет функции измерения, контроля и регулирования основными технологическими параметрами, характеризующие состояние технологического процесса роботизированного доения.

Сведения о планируемом проекте

Назначение: умная ферма 4.0 – это специализированная система управления фермой, предназначенная для автоматизации процессов мониторинга, учета и анализа данных о животных, кормлении, доении, воспроизводстве и ветеринарии.

Функции:

- 1. Мониторинг: дашборд с основными виджетами, отображающими информацию о текущем состоянии фермы.
- 2. Доение: параметры доения от групповых до индивидуальных для животных, учёт надоев, анализ молокоотдачи.
- 3. Кормление: расчёт рационов, контроль выдачи корма.
- 4. Воспроизводство: мониторинг охоты, регистрация осеменений, прогнозирование отёлов.
- 5. Ветеринария: ведение медкарт, напоминания о вакцинациях, лечение, анализ заболеваемости.
- 6. Оборудование: контроль работы техники, уведомления о сбоях, планирование ТО.
- 7. Отчёты: генерация графических и табличных отчётов по всем разделам, экспорт в таблицы.

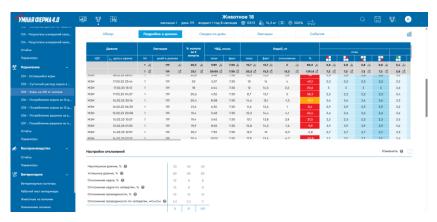
Потенциальное применение

Уровень готовности программного продукта (TRL №6): выполнена лабораторная интеграция с доильным роботом. Проведена программная эмуляция технологических процессов молочной фермы.

Эффекты от внедрения: оптимизация доения и кормления повышает продуктивность на 10-20%, Своевременная диагностика заболеваний и контроль воспроизводства сокращают ветеринарные расходы. Автоматизация рутинных задач освобождает до 30% рабочего времени персонала.

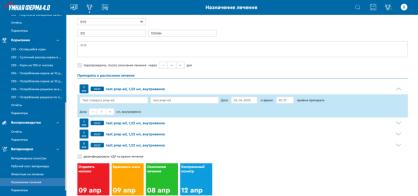
Отечественные или зарубежные аналоги: Afifarm, T4C, Crystal

Основные заказчики: кировский молочный комбинат, АПК «Титан», «Агрофирма Трио», Агрохолдинг «Грин Агро» и др.



Мониторинг: дашборд с основными виджетами, отображающими информацию о текущем состоянии фермы

Доение: параметры доения от групповых до индивидуальных для животных, учёт надоев, анализ молокоотдачи.


Кормление: расчёт рационов, контроль выдачи

Воспроизводство: мониторинг охоты, регистрация осеменений, прогнозирование отёлов

Ветеринария: ведение медкарт, напоминания о вакцинациях, лечение, анализ заболеваемости

Оборудование: контроль работы техники, уведомления о сбоях, планирование ТО.

Отчёты: генерация графических и табличных отчётов по всем разделам, экспорт в таблицы.

Контакты

Кафедра управления и интеллектуальных технологий

Заведующий кафедрой Бобряков Александр Владимирович