Научные разработки для оптимизации технологических процессов в электроэнергетическом комплексе

Содержание

Для перехода на выбранную разработку нажмите по заголовку на слайде «Содержание»

Устройства

- 1. Кабельная втычная (штекерная) муфта 35 кВ на отечественной элементной базе
- 2. Токопровод классом напряжения 6 110 кВ на основе новых композиционных материалов со встроенными цифровыми элементами диагностики и мониторинга
- 3. Бесконтактная машинно-электронная генерирующая система на базе асинхронной машины
- 4. Высокоскоростные турбогенераторы для микротурбинных энергоустановок и мини ТЭЦ
- 5. Прототип накопителя энергии на основе инерционной технологии хранения энергии (маховика)
- 6. Интеллектуальная система релейной защиты и автоматики (ИС РЗА) с гибкой функциональной структурой

Содержание

Для перехода на выбранную разработку нажмите по заголовку на слайде «Содержание»

Устройства

- 7. Электролаборатория на базе малогабаритного автомобиля для автоматизации поиска мест повреждений высоковольтных кабельных линий
- 8. Распределенная система накопления электроэнергии, размещаемая в островных энергосистемах
- 9. Полупроводниковый регулятор реактивной мощности (ПРРМ)
- 10. Полупроводниковые устройства регулирования напряжения трансформаторов под нагрузкой (ПУРНТ)
- 11. Полупроводниковые устройства стабилизации переменного напряжения
- 12. Устройства симметрирования для повышения эффективности режимов работы распределительных сетей с несимметричными нагрузками

Содержание

Для перехода на выбранную разработку нажмите по заголовку на слайде «Содержание»

Программно-аппаратный комплекс

13. Программно-аппаратный комплекс реального времени «Цифровой двойник энергосистемы» (ЦДЭС)

Программное обеспечение

- 14. Цифровой модуль по оценке климатических рисков объектов для электросетевого комплекса
- 15. Программное обеспечение для задач проектирования и эксплуатации электростанций, подстанций и систем электроснабжения «GuPlan»

Национальные проекты технологического лидерства (НПТЛ)

«Новые атомные и энергетические технологии» – энергетика. Направлен на расширение присутствия России на международном рынке атомных и смежных разработок, поставки отечественного оборудования предприятиям ТЭК.

«Беспилотные авиационные системы» – роботы и беспилотники. Включает разработку и серийное производство БАС и комплектующих, развитие необходимой инфраструктуры.

«Промышленное обеспечение транспортной мобильности» – транспорт. Нацелен на поддержку производства самолётов и вертолётов, судов и судового оборудования, инновационного транспорта, а также кадровое обеспечение развития транспорта.

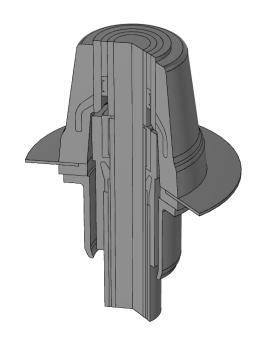
«Средства производства и автоматизации» – промышленность. Включает в себя федеральные проекты по развитию станкоинструментальной промышленности, промышленной робототехники и автоматизации производства, литейного и термического оборудования.

«Новые материалы и химия» – материалы. Запланировано создание новых производств и центров компетенций, увеличение добычи дефицитного сырья, развитие технологий.

«Развитие многоспутниковой орбитальной группировки» — космос. Предусмотрено увеличение числа космических аппаратов, достижение независимости в космических сервисах и услугах.

Кабельная втычная (штекерная) муфта 35 кВ на отечественной элементной базе

Кабельная втычная (штекерная) муфта 35 кВ на отечественной элементной базе



Сведения о реализованном проекте

Назначение: муфта на напряжение 35 кВ используется в ячейках РУ с газовой изоляцией с бушингами (bushing insulator проходными изоляторами аппаратной части РУ) с внутренним конусом типа 2, 3 по EN 50180 и EN 50181.

Технические характеристики: типоразмер 2 - ток до 800 А, диаметр изоляции 13,0-41,4 мм и сечение проводника 35-300 мм² при длине 80 мм, типоразмер 3 - ток до 1250 А, диаметр 20,3-52,0 мм и сечение 35-630 мм² при длине 80 мм.

Научная новизна (ценность): новые отечественные конструкции штекерных муфт 35 кВ ранее отсутствующих на рынке.

3D-модель технического проекта штекерной втычной муфты

Кабельная втычная (штекерная) муфта 35 кВ на отечественной элементной базе

Потенциальное применение

Уровень готовности (TRL 4): разработан детальный макет решения для демонстрации работоспособности технологии. Выход на промышленное производство: IV квартал 2025 г.

Эффекты от внедрения: отечественная разработка будет способствовать импортозамещению и обновлению материально-технической базы действующих подстанций 35 кВ, что в свою очередь позволит уменьшить количество технологических аварий, возникающих в следствие износа компонентной части подстанций.

Основные заказчики:

ПАО «Россети Ленэнерго», АО «ДРСК», АО «БЭСК» и другие сетевые компании.

Разрез разрабатываемой штекерной муфты 35 кВ

Токопровод класса напряжения 6 - 110 кВ на основе новых композиционных материалов со встроенными цифровыми элементами диагностики и мониторинга

Токопроводов класса напряжения 6 - 110 кВ на основе новых композиционных материалов со встроенными цифровыми элементами диагностики и мониторинга.

Сведения о реализованном проекте

Назначение: токопроводы с твердой изоляцией на максимальное рабочее напряжение 6-110 кВ предназначены для работы при нормальных и аварийных режимах на электрических станциях и в сетях трехфазного переменного тока частотой 50 Гц.

Технические характеристики: номинальное напряжение 6(10)-110 кВ, номинальный ток - 2-6 кА.

Научная новизна (ценность): заключается в разработанной новой отечественной твердой изоляции, а также встроенной системы диагностики и мониторинга показателей токопроводов.

Токопровод с твердой литой изоляцией 10 кВ

Токопроводов класса напряжения 6 - 110 кВ на основе новых композиционных материалов со встроенными цифровыми элементами диагностики и мониторинга.

Потенциальное применение

Уровень готовности (TRL №9): разработка находится в промышленном производстве.

Эффекты от внедрения: уменьшение габаритных размеров изделий, повышение характеристик корпусов изделий: прочность, герметичность, ремонтопригодность, устойчивость к внешним воздействиям, обеспечение удобства обслуживания и ремонта, исключение влияния окружающей среды на работоспособность и надежность изделий, обеспечения экспортного потенциала и замещения импорта.

Основные заказчики:

ПАО «Россети Ленэнерго», АО «ДРСК», АО «БЭСК» и другие сетевые компании.

Система мониторинга показателей токопроводов

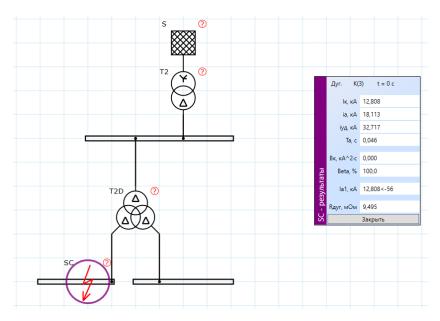
Контакты

Кафедра Техники и электрофизики высоких напряжений НИУ «МЭИ»

Заведующий кафедрой Темников Александр Георгиевич

Программное обеспечение для задач проектирования и эксплуатации электростанций, подстанций и систем электроснабжения «GuPlan»

Программное обеспечение для задач проектирования и эксплуатации электростанций, подстанций и систем электроснабжения «GuPlan»



Сведения о реализованном проекте

Назначение: расчет токов короткого замыкания (КЗ) в разных точках электрической сети до 1кВ и выше. В электроустановках переменного тока напряжением до 1 кВ и выше и в электроустановках оперативного постоянного тока.

Функции:

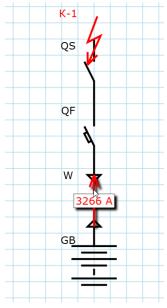
- 1. Расчет токов K3 в электроустановках переменного тока напряжением до 1 кВ по ГОСТ 28249-93 и свыше 1 кВ по ГОСТ Р 52735-2007.
- 2. Расчет токов КЗ в электроустановках оперативного постоянного тока до 1кВ.

Функция 1. Расчет токов КЗ в электроустановках переменного тока напряжением 110 кВ.

Программное обеспечение для задач проектирования и эксплуатации электростанций, подстанций и систем электроснабжения «GuPlan»

Потенциальное применение

Уровень готовности программного продукта (TRL №9): разработан ПО интерфейс, блок расчета токов КЗ, определены основные модели оборудования электрической сети.

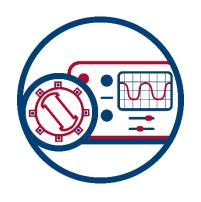

№ свидетельства государственной регистрации): 2024666614.

Эффекты от внедрения: повышение точности и упрощения расчета токов K3, как следствие оптимальный выбора мощность оборудования.

Отечественные или зарубежные аналоги: Digsilent Power Factory, ETAP, NEPLAN. Преимущество ПО в расчете токов КЗ по отечественным ГОСТ.

Основные заказчики:

ПАО «Россети», ПАО «Мосэнерго», ПАО «РусГидро»



Функция 2. Расчет токов КЗ в электроустановках оперативного постоянного тока до 1кВ.

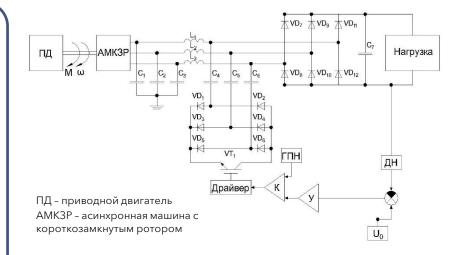
Контакты

Кафедра Электрических станций

Заведующий кафедрой Монаков Юрий Викторович

Бесконтактная малогабаритная машинно-электронная генерирующая система на базе асинхронной машины

Бесконтактная малогабаратиная машинноэлектронная генерирующая система на базе асинхронной машины



Сведения о планируемом проекте

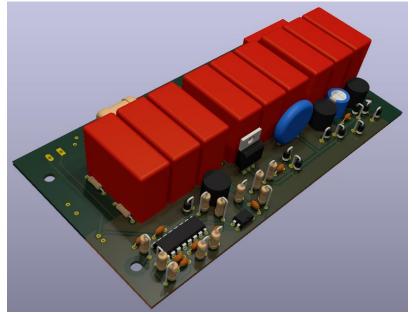
Назначение: малая (распределённая) энергетика.

Технические характеристики: стабилизированное выходное напряжение (десятки-сотни вольт) при переменной частоте вращения приводного вала; высокая надёжность за счёт отсутствия подвижных электрических соединений; рациональная мощность генераторной установки от единиц Вт до десятков кВт.

Научная новизна: бесконтактность и предельно упрощённая технология изготовления электрической машины и системы стабилизации выходного напряжения.

Функциональная схема БМЭГС с регулированием напряжения при помощи изменения ёмкостного тока широтно-импульсным способом

Бесконтактная малогабаратиная машинноэлектронная генерирующая система на базе асинхронной машины


Потенциальное применение

Уровень готовности (TRL №3): работоспособность решения подтверждена имитационным компьютерным моделированием. Мелкомасштабный прототип для лабораторных испытаний (номинальная мощность 35 Вт, выходное напряжение 220-360В) находится в процессе изготовления.

Эффекты от внедрения: снижение себестоимости производства компактных генераторных установок для распределённой энергетики; развитие микрогенерации широкого применения, включая использование возобновляемых источников энергии.

Потенциальные заказчики:

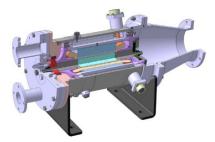
АО «Росатом Возобновляемая энергия», ПАО «ЭЛ5-Энерго», ПАО «РусГидро»

Внешний вид (3D-модель) электронной части БМЭГС для экспериментального образца на базе серийного асинхронного двигателя УАД-72

Высокоскоростные турбогенераторы для микротурбинных энергоустановок и мини ТЭЦ

Высокоскоростные турбогенераторы для микротурбинных энергоустановок и мини ТЭЦ

Сведения о реализованном проекте


Назначение: высокоскоростные турбогенераторы с возбуждением от постоянных магнитов являются основным и наиболее сложным функциональным элементом газовых и паровых (работающих, в том числе, по органическому циклу Ренкина) микротурбинных энергоустановок и мини ТЭЦ.

Технические характеристики: мощность 1÷150 кВт, частота вращения до 360000 об/мин, КПД электромагнитного преобразования 85÷90%, стационарное и транспортное исполнение.

Научная новизна (уникальность): новизна решения состоит в агрегатной конструкции с расположением индуктора и рабочих колес на одном валу и использовании бесконтактных газодинамических подшипников.

Образцы и 3D-модель высокоскоростных турбогенераторов

Высокоскоростные турбогенераторы для микротурбинных энергоустановок и мини ТЭЦ

Потенциальное применение

Уровень готовности (TRL №7): выполнен ряд НИОКР, изготовлены экспериментальные образцы, проведены их функциональные и ресурсные испытания.

Эффекты ОТ внедрения: повышение энергетической безопасности РФ за счёт надёжных и эффективных создания отечественных, энергоустановок. Обеспечение электричеством Арктических и теплом и Северных регионов. Повышение экологичности промышленных объектов за счёт утилизации низкопотенциального тепла, в том числе теплоты выхлопных газов транспортных средств. Создание автономных, в том числе носимых энергоустановок.

Основные заказчики: ПАО «РусГидро», МО РФ.

Стендовые испытания образца прототипа энергоустановки по утилизации теплоты выхлопных газов автомобилей, работающей по органическому циклу Ренкина

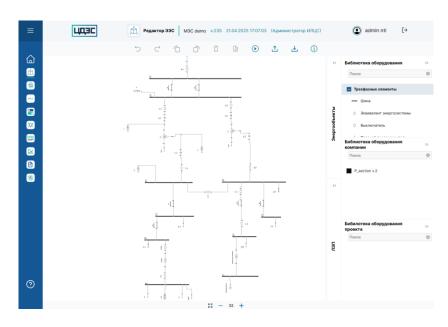
Контакты

Кафедра Электротехнических комплексов автономных объектов и электрического транспорта НИУ «МЭИ»

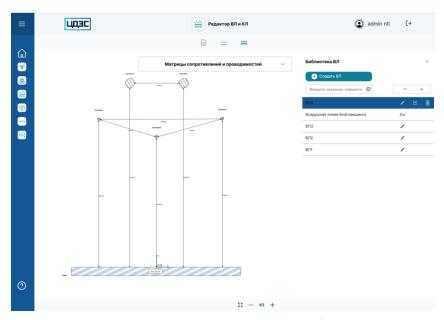
Заведующий кафедрой Румянцев Михаил Юрьевич

Сведения о реализованном проекте

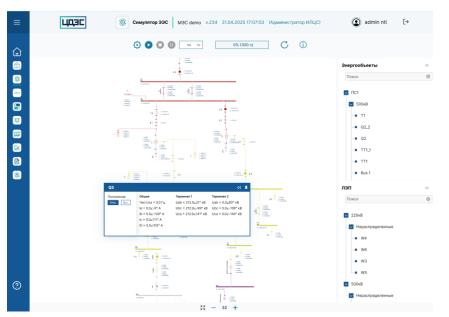
Назначение: ПАК предназначен для численного моделирования в реальном времени и выполнения расчетов электрических, электромагнитных и электромеханических процессов в заданной виртуальной (численной) модели энергосистемы.


Функции:

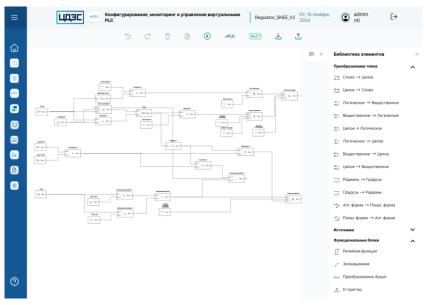
- 1. Построение схемы модели на базе готовых элементов из библиотеки или из пользовательских компонентов, а также импорт готовых моделей в формате CIM.
- 2. Редактирование воздушных и кабельных линий электропередачи для расчета математических параметров с использованием ПИ-секций.
- 3. Моделировать и рассчитывать схемы в режиме реального времени с отображением и сохранением результатов моделирования.
- 4. Моделирование РЗА и автоматического регулирования с использованием логических узлов по стандарту МЭК 61850.
- 5. Моделирование виртуальных программируемых логических контроллеров с реализацией основных логических и математических операций по стандарту МЭК 61131 и реализацию пользовательских алгоритмов на языке программирования С.
- 6. Управление протоколами передачи данных (МЭК 61850 (SV, GOOSE, MMS), IEEE C37.118(PMU), МЭК60870-5-104, MODBUS TCP, MQTT, UDP) для взаимодействия с различным оборудованием.



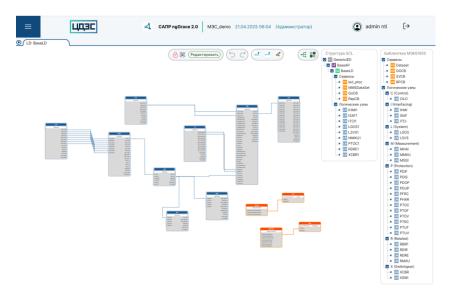
Функция 1. Построение схемы модели на базе готовых элементов из библиотеки или из пользовательских компонентов, а также импорт готовых моделей в формате СІМ



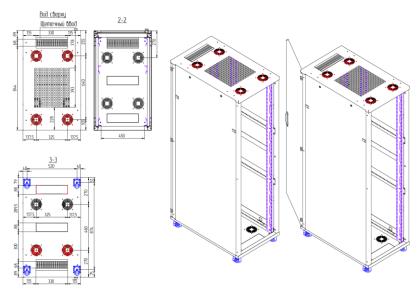
Функция 2. Редактирование воздушных и кабельных линий электропередачи для расчета математических параметров с использованием ПИ-секций.



Функция 3. Моделировать и рассчитывать схемы в режиме реального времени с отображением и сохранением результатов моделирования



Функция 4. Моделирование РЗА и автоматического регулирования с использованием логических узлов по стандарту МЭК 61850

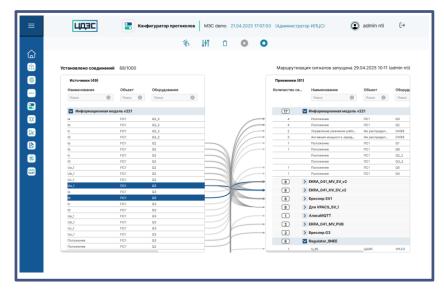


Функция 5. Моделирование виртуальных программируемых логических контроллеров с реализацией основных логических и математических операций по стандарту МЭК 61131 и реализацию пользовательских алгоритмов на языке программирования С

Общий вид ПАК «ЦДЭС»

Потенциальное применение

Уровень готовности программного продукта (TRL №9): ПАК интегрирован в предполагаемую среду и демонстрирует свою полезность в этой среде в течение длительного периода времени.


 N° свидетельства государственной регистрации: $N^{\circ}2023662517$, $N^{\circ}2023664107$, $N^{\circ}2023666938$, $N^{\circ}2023664407$, $N^{\circ}202366258$.

Номер записи в реестре российского ПО (reestr.digital.gov.ru): №20172, №20173, №20174, №20175, №19433, №20378, №19515.

Эффекты от внедрения: повышает надежность энергосистем, снижает затраты, ускоряет процессы тестирования и обеспечивает гибкость управления, что делает его ключевым инструментом для цифровизации электроэнергетики.

Основные заказчики:

ООО НПП «ЭКРА», ООО «НПП Бреслер», ООО «ИНБРЭС», ПАО «Россети», АО «ОЭК».

Функция 6. Управление протоколами передачи данных (МЭК 61850 (SV, GOOSE, MMS), IEEE C37.118(PMU), МЭК60870-5-104, MODBUS TCP, MQTT, UDP) для взаимодействия с различным оборудованием

Интеллектуальная система релейной защиты и автоматики (ИС РЗА) с гибкой функциональной структурой

Интеллектуальная система релейной защиты и автоматики (ИС РЗА) с гибкой функциональной структурой

Сведения о реализованном проекте

Назначение: комплекс программно-технических средств, предназначенный для защиты основного технологического оборудования подстанций 6 - 220 кВ в аварийных ситуациях, а также для реализации функций автоматики и управления оборудованием в целях обеспечения бесперебойного и качественного электроснабжения конечных потребителей.

Функции:

- 1. Выполняет широкий набор функций РЗА по стандарту МЭК 61850, необходимых для защиты электрооборудования 6-220 кВ, без дополнительных устройств.
- 2. Сенсорное управление устройством.
- 3. Отображение в интерфейсе устройства главной схемы защищаемого объекта, осциллограмм аварийных событий и диагностической информации.
- 4. Повышение надежности системы РЗА за счет применения гибкой функциональной архитектуры построения комплекса РЗА.
- 5. Имеет модульную структуру и позволяет расширять функциональность устройства.

Интеллектуальная система релейной защиты и автоматики (ИС РЗА) с гибкой функциональной структурой

Потенциальное применение

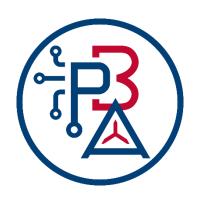
Уровень готовности программного продукта (TRL9): получено положительное заключение о проведенной опытной эксплуатации на ПС 110/10 кв «Мамулино».

Эффекты от внедрения: автономное самовосстановление защиты, снижение затрат без потери надежности, оптимизация эксплуатации, устойчивость к множественным отказам.

Отечественные или зарубежные аналоги:

ЭКРА, AББ, Siemens

Основные заказчики:


ПАО «Россети», АО «ОЭК» и другие электросетевые компании.

Опытная эксплуатация ИСРЗА на объекте ПС 110/10 кВ «Мамулино»

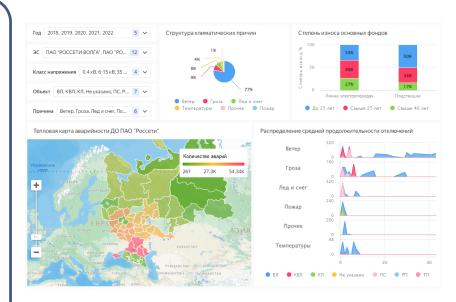
Контакты

Кафедра Релейной защиты и автоматизации энергосистем (РЗиАЭ)

Заведующий кафедрой Волошин Александр Александровичя

Цифровой модуль по оценке климатических рисков объектов для электросетевого комплекса

Цифровой модуль по оценке климатических рисков объектов для электросетевого комплекса



Сведения о реализованном проекте

Назначение: инструмент предиктивной аналитики по оценке и визуализации аварийности на объектах электросетевого комплекса в результате влияния климатометеорологических факторов

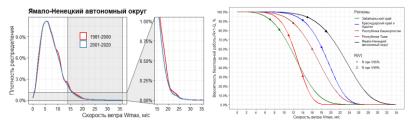
Функции:

- 1. Интерактивная визуализация (дашборд) структуры и причин технологических нарушений в электросетевом комплексе, связанных с климатическими рисками.
- 2. Прогнозное моделирование аварийности объектов электросетевого комплекса от экспозиции климатических факторов.
- 3. Сравнение нормативных значений по картам климатического районирования с фактической метеорологической ситуацией на территории анализа

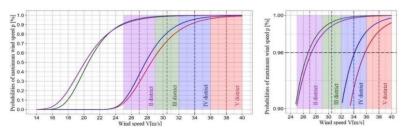
Функция 1. Интерактивная визуализация (дашборд) структуры и причин технологических нарушений в электросетевом комплексе, связанных с климатическими рисками

Цифровой модуль по оценке климатических рисков объектов для электросетевого комплекса

Потенциальное применение


Уровень готовности программного продукта (TRL №5): сформирован экспериментальный инструмент анализа и прогнозирования технологических, связанных с климатическими причинами в условиях, приближенных к условиям эксплуатации.

№ свидетельства государственной регистрации: RU 2024620644; RU 2024615641.


Эффекты от внедрения: совершенствование мониторинга SAIDI и SAIFI, соответствие передовым практикам при подготовке нефинансовой отчетности (ESG-рэнкинга).

Отечественные или зарубежные аналоги: Платформа Управление надежностью и активами АО «Россети Научно-технический центр».

Основные заказчики: ПАО «Россети», ПАО «РусГидро»

Функция 2. Прогнозное моделирование аварийности объектов электросетевого комплекса от экспозиции климатических факторов

Функция 3. Сравнение нормативных значений по картам климатического районирования с фактической метеорологической ситуацией на территории анализа

Электролаборатория на базе малогабаритного автомобиля для автоматизации поиска мест повреждений высоковольтных кабельных линий

Электролаборатория на базе малогабаритного автомобиля для автоматизации поиска мест повреждений высоковольтных кабельных линий

Сведения о реализованном проекте

Назначение: передвижная цифровая электролаборатория для поиска места повреждения и испытания изоляции.

Технические характеристики:

Шасси: УАЗ Патриот

Максимальное выходное напряжение: 50 кВ (АС)

и 60 кВ (DC)

Максимальное выходное напряжение в режиме

XX: 20 κB

Максимальный ток прожига в режиме K3: 100 A.

Научная новизна (уникальность): малогабаритный аппаратно-программный комплекс с интерактивной системой визуализации найденных дефектов и состояния высоковольтных кабельных линий на карте местности.

Внешний вид малогабаритной передвижной электролаборатории для автоматизации поиска мест повреждений высоковольтных кабельных линий

Электролаборатория на базе малогабаритного автомобиля для автоматизации поиска мест повреждений высоковольтных кабельных линий

Потенциальное применение

Уровень готовности (TRL №7): создан финальный прототип и проведены испытания с индустриальным партнером.

Эффекты от внедрения:

- 1. Обеспечение импортозамещения в области малогабаритных передвижных цифровых электротехнических лабораторий
- 2. Возможность определения дефектов кабеля (старение изоляции, механические повреждения) на ранних этапах их развития для своевременного принятия решений по их устранению, повышению надежности электроснабжения, а также увеличению срока службы кабельных линий и муфт

Основные заказчики:

ПАО «Россети», ПАО «РусГидро» и другие электросетевые компании

Вид аппаратно-программного комплекса с интерактивной системой визуализации (интерьер электролаборатории)

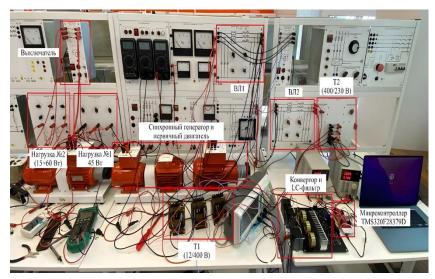
Контакты

Кафедра Инженерной экологии и охраны труда

Заведующий кафедрой Кондратьева Ольга Евгеньевна

Распределенная система накопления электроэнергии, размещаемая в островных энергосистемах

Распределенная система накопления электроэнергии, размещаемая в островных энергосистемах



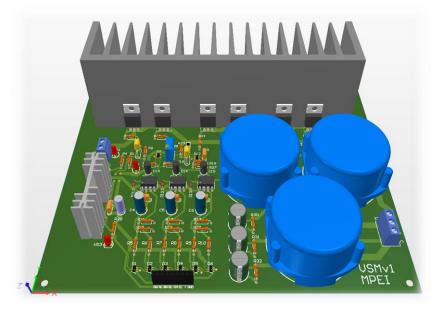
Сведения о реализованном проекте

Назначение: исследование возможности эксплуатационного продления pecypca энергоблоков ТЭС путем увеличения межремонтных интервалов за счет сокращения наработки оборудования. Сокращение достигается эксплуатации выводом ИЗ малонагруженных генераторов с передачей функции вращающегося резерва (РСНЭЭ) при неизменной установленной мощности станции.

Научная новизна (ценность): уникальность решения заключается в возможности натурного моделирования работы систем накопления электроэнергии.

Физическая модель фрагмента энергосистемы Калининградской области

Распределенная система накопления электроэнергии, размещаемая в островных энергосистемах

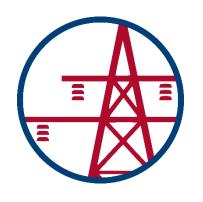

Потенциальное применение

Уровень готовности (TRL №4): разработан детальный макет решения для демонстрации работоспособности технологии.

Эффекты от внедрения: получение режимных параметров работы систем накопления электроэнергии в именованных единицах в масштабе, отражающих реальные электромагнитные переходные процессы с учетом электромеханических процессов.

Основные заказчики:

ООО «ИНТЕР РАО - Инжиниринг», ПАО «РусГидро», ПАО «Россети» и другие электрогенерирующие компании.



Объёмное изображения конвертора управления системой накопления электроэнергии

Контакты

Кафедра электроэнергетических систем НИУ «МЭИ»

Зам. заведующего кафедрой Насыров Ринат Ришатович

Полупроводниковый регулятор реактивной мощности (ПРРМ)

Полупроводниковый регулятор реактивной мощности (ПРРМ)

Сведения о реализованном проекте

Назначение: компенсация реактивной мощности в линиях электропередачи.

Технические характеристики: мощность: 5 Мвар; напряжение 10 кВ; диапазон регулирования мощности: 0,3 – 5 Мвар; количество уровней регулирования мощности – 18; КПД – 98%; быстродействие – 20 мс; наличие высших гармоник в кривой тока – нет.

Научная новизна: компенсатор реактивной мощности на основе полупроводникового регулятора напряжения, обладающий полным отсутствием высших гармоник в кривой тока, широким диапазоном регулирования мощности и возможностью масштабирования технологии для сетей различного класса напряжения.

Опытный образец ПРРМ, состоящий из многообмоточного трансформатора, полупроводникового коммутатора и реактивного элемента

Полупроводниковый регулятор реактивной мощности (ПРРМ)

Потенциальное применение

Уровень готовности (TRL № 7): изготовлен и испытан опытный образец на основе отечественной элементной базы и доверенного программного обеспечения

Эффекты от внедрения: повышение надежности и эффективности линий электропередачи за счет увеличения пропускной способности сетей, а также отсутствия высших гармоник в кривой тока ПРРМ

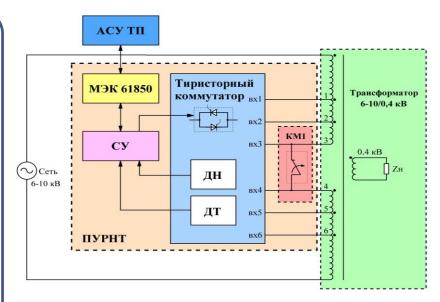
Основные заказчики:

ПАО «Россети», АО «ОЭК», ПАО«РусГидро», Группа компаний «Русагро», ОАО «РЖД».

Внешний вид опытного образца ПРРМ в составе испытательного стенда в выставочном зале

Полупроводниковые устройства регулирования напряжения трансформаторов под нагрузкой (ПУРНТ)

Полупроводниковые устройства регулирования напряжения трансформаторов под нагрузкой (ПУРНТ)



Сведения о реализованном проекте

Назначение: ПУРНТ предназначены для регулирования напряжения трансформаторов ТП под нагрузкой. ПУРНТ подключаются к стандартным регулировочным ответвлениям ПБВ трансформаторов класса 6-10/0,4кВ сухого типа.

Технические характеристики: класс напряжения электрической сети 6-10 кВ; Диапазон мощностей нагрузки 250кВт - 2МВт; Диапазон регулирования напряжения до ± 5 % Uном; Быстродействие регулирования 20 мс; Влияние на качество электроэнергии отсутствует; Мониторинг GSM, Ethernet, МЭК 61850, МЭК 60870-5-104.

Научная новизна: ПУРНТ считается принципиально новой технологией регулирования и стабилизации напряжения.

Функциональная схема устройства с подключением к регулировочным ответвлениям трансформатора 6-10/0.4, принцип работы ПУРНТ

Полупроводниковые устройства регулирования напряжения трансформаторов под нагрузкой (ПУРНТ)

Потенциальное применение

Уровень готовности (TRL №9): технология создана в рамках Постановления Правительства №218 от 09.04.2010г. Налажено серийное производство на базе индустриального партнера АО ВО «Электроаппарат». Готовится компактное, малогабаритное решение для регулирования уровней напряжения трансформаторов ТП класса 6-10/0,4кВ масляного типа под нагрузкой.

Эффекты от внедрения: ПУРНТ позволяет управлять режимами работы сетей как в автоматическом режиме, так и в дистанционном режиме с удалённого диспетчерского пункта

Основные заказчики: электросетевые компании (ПАО «ФСК ЕЭС», АО «Объединенная энергетическая компания» и другие); предприятия реального сектора экономики (АО ВО «Электроаппарат» и другие).

Опытный образец устройства в составе КТП

Полупроводниковые устройства стабилизации переменного напряжения

Полупроводниковые устройства стабилизации переменного напряжения

Сведения о реализованном проекте

Назначение: устройства предназначены для автоматической быстродействующей стабилизации трёхфазного переменного напряжения в распределительной электрической сети 0,4 кВ.

Технические характеристики: номенклатурный ряд мощностей устройств: 50-100-160-200 кВт. Диапазон входных напряжений: 160-270 В. Стабилизация выходного напряжения: 220В ± 10%. Быстродействие регулирования напряжения: не более 40 мс. Интеграция в АСУ ТП по протоколу МЭК 60870-5-104.

Научная новизна (уникальность): разработанные топологии полупроводниковых коммутаторов и алгоритмы управления позволяют обеспечить высокую надежность, быстродействие и неограниченный коммутационный ресурс.

Разработка и производство полупроводниковых устройств стабилизации переменного напряжения мощностью 50-100-160-200 кВт

Полупроводниковые устройства стабилизации переменного напряжения

Потенциальное применение

Уровень готовности (TRL №7): разработка и опытные испытания реального действующего прототипа (OKP).

Эффекты от внедрения: повышение качества электроэнергии у потребителей по следующим параметрам: величина установившегося отклонения напряжения и коэффициенты несимметрии напряжений в трехфазных электрических сетях в соответствии с ГОСТ 32144-2013.

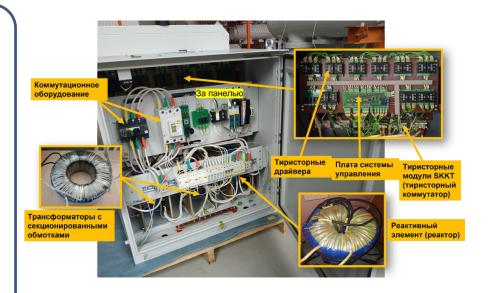
Основные заказчики:

ПАО «Россети Московский регион», ПАО «Россети Центр», АО «ОЭК».

Опытно-промышленная эксплуатация полупроводниковых устройств стабилизации переменного напряжения (объект Ярэнерго, объект МОЭСК)

Устройства симметрирования для повышения эффективности режимов работы распределительных сетей с несимметричными нагрузками

Устройства симметрирования для повышения эффективности режимов работы распределительных сетей с несимметричными нагрузками



Сведения о планируемом проекте

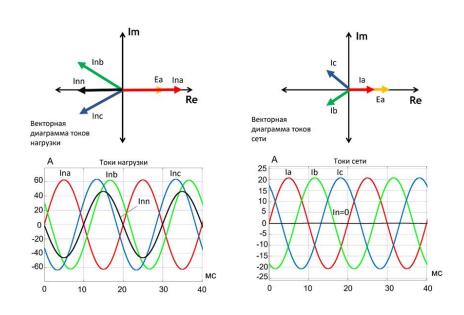
Назначение: устранение дисбаланса напряжений на нагрузке, компенсация несимметрии токов сети, снижение потерь и повышение пропускной способности сети за счет реализации управляемого энергообмена между фазами сети.

Технические характеристики: номинальное напряжение 0.4 кВ, мощность до 50 кВА. Устройства имеют исполнения для трех- и четырехпроводных распределительных сетей.

Научная новизна: устройства реализуют адаптивное управление режимами работы распределительных сетей с несимметричными нагрузками, характеризуются малыми потерями, высоким быстродействием, возможностью работы при любых характерах нагрузки.

Макет устройства симметрирования 50 кВА для распределительной сети 0.4 кВ

Устройства симметрирования для повышения эффективности режимов работы распределительных сетей с несимметричными нагрузками


Потенциальное применение

Уровень готовности (TRL №7): разработано программно-аппаратное обеспечение систем управления устройств симметрирования. Изготовлены и исследованы макетные и опытные образцы устройств симметрирования.

Эффекты ОТ внедрения: техническим разработка результатом является устройства управления универсального работы обеспечивая сетей. режимами повышения эффективности их работы в условиях несимметрии токов и напряжений.

Основные заказчики:

ПАО «Россети», ПАО «Россети Московский Регион»

Симметрирование режима работы распределительной сети и компенсация реактивной мощности с помощью устройства симметрирования

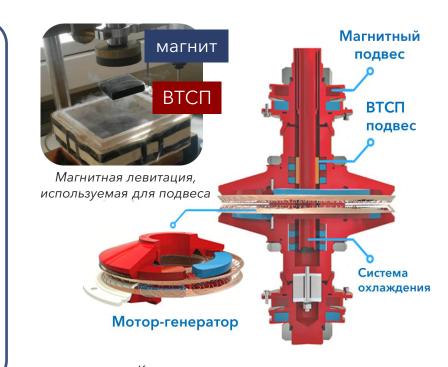
Контакты

Кафедра Промышленной электроники

Заведующий кафедрой М.Г. Асташев

Прототип накопителя энергии на основе инерционной технологии хранения энергии (маховика)

Прототип накопителя энергии на основе инерционной технологии хранения энергии (маховика)


Сведения о реализованном проекте

Назначение: разработка предназначена для компенсации импульсных или кратковременных нагрузок большой мощности, а также для обеспечения электроэнергией в случае внезапного отключения электрической энергии до ввода резервного источника питания.

Технические характеристики:

- Удельная энергоемкость 5-10 Вт·ч/кг;
- Удельная мощность 2-10 кВт/кг;
- Срок службы более 15 лет;
- Напряжение 400 В.

Научная новизна (уникальность): уникальная полностью интегрированная конструкция моторгенератора и магнитная левитация на сверхпроводящем (ВТСП) подвесе для повышения КПД и уменьшения габаритов.

Конструкция накопителя энергии

Прототип накопителя энергии на основе инерционной технологии хранения энергии (маховика)

Потенциальное применение

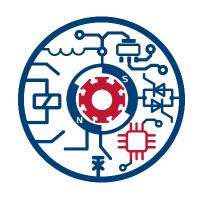
Уровень готовности (TRL №5): разработан испытан прототип накопителя с запасаемой энергией 30 кДж и мощностью 2кВт.

Эффекты от внедрения:

- повышение надежности и качества электроэнергии в системах автономного и резервного энергоснабжения;
- частотное регулирование в распределенных энергосистемах, в том числе с ВИЭ;
- увеличение срока службы аккумуляторов;
- уменьшение деградации емкости систем хранения энергии.

Основные заказчики:

ПАО «Россети», ПАО «Русгидро», ОАО РЖД



Экспериментальный образец накопителя энергии 30 кДж, 2 кВт

Контакты

Кафедра Электромеханики, электрических и электронных аппаратов

Заведующий кафедрой Киселев Михаил Геннадьевич