Повышение эффективности энергоблоков на основе модификации функциональных поверхностей конденсаторов паровых турбин тепловых электрических станций

Работа проведена в 2015 г. в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 - 2020 г.г.» в период с 01 января 2015г. по 30 июня 2015г.

Соглашение о предоставлении субсидии № 14.583.21.0011 от 24 ноября 2014г. (Этап 2) Научный руководитель проекта: старший научный сотрудник НЦ «Износостойкость», к.т.н. Рыженков Артем Вячеславович.

Ответственный исполнитель: инженер НЦ «Износостойкость» Рыженков Олег Вячеславович.

1. Цель прикладного научного исследования и экспериментальной разработки

- 1.1. Определение влияния температуры охлаждающей воды на интенсивность теплопередачи при конденсации пара на поверхности, модифицированной с использованием ПАВ.
- 1.2. Определение влияния температуры охлаждающей воды на интенсивность теплопередачи при конденсации пара на поверхности, подготовленной методом химического травления и модифицирования ПАВ.
- 1.3. Определение влияния температуры охлаждающей воды на интенсивность теплопередачи при конденсации пара на поверхности, подготовленной методом химического травления при использовании переменного тока и модифицирования ПАВ.

2. Основные результаты ПНИ

В 2015 году в рамках 2 этапа:

- В соответствии с п. 3.7 технического задания проведены тестовые испытания модернизированного экспериментального стенда для проведения исследований по определению влияния различных способов перевода пленочной конденсации в капельную на интенсивность теплообмена с моделированием эксплуатационных условий. Результаты тестовых испытаний полностью соответствуют необходимым требованиям.
- разработана эскизная конструкторская документация и изготовлен экспериментальный образец трубной системы конденсатора модифицированного ПАВ.
- разработана эскизная конструкторская документация и изготовлен экспериментальный образец трубной системы конденсатора с применением методом химического травления и модифицирования ПАВ.
- разработана эскизная конструкторская документация и изготовлен экспериментальный образец трубной системы конденсатора методом химического травления при использовании переменного тока и модифицирования ПАВ.
- В ходе выполнения ПНИ получены зависимости влияния температуры охлаждающей воды в диапазоне от 5 до 40 °C на интенсивность теплопередачи при конденсации пара на 3-х конденсаторах с поверхностями:
 - модифицированной ПАВ;
 - подготовленной методом химического травления и модифицированной ПАВ;
- подготовленной методом химического травления при использовании переменного тока и модифицированной ПАВ.

Лучший результат по величине коэффициента теплопередачи показал 3-й образец конденсатора с поверхностью, подготовленной методом химического травления при использовании переменного тока и модифицированный ПАВ. Определено, что с увеличением температуры охлаждающей воды на входе, соответственно растет температура охлаждающей воды на выходе, что приводит к уменьшению недогрева (разницы между температурой насыщения и температурой охлаждающей воды на выходе), при одном и том же давлении, что в конечном итоге приводит к увеличению

коэффициента теплопередачи. Выявлено влияние краевого угла смачивания поверхности на интенсивность теплообменных процессов.

- разработана эскизная конструкторская документация экспериментального образца установки для модификации функциональных поверхностей конденсаторов паровых турбин тепловых электрических станций.

Промежуточные результаты II этапа были представлены на 21 международной выставке-форуме «Энергетика 2015» г. Самара 10 – 13 февраля 2015 года.

Проведены дополнительные патентные исследования в соответствии с ГОСТ 15.011-96.

Подана заявка в ФИПС на изобретение № 2015117110 от 06.05.2015 «Способ интенсификации конденсации пара в конденсаторе паротурбинной установки», РФ.

Полученные результаты полностью соответствуют техническим требованиям к выполняемому проекту.

3. Область применения результатов ПНИ

Результаты исследований, получаемые на данном экспериментальном стенде позволяют разработать технологический регламент по модификации функциональных поверхностей конденсаторов ПТУ ТЭС (супергидрофобизация трубной системы конденсаторов по паровой стороне) с целью повышения значения среднеинтегрального коэффициента теплопередачи конденсатора.

Данная технология может быть использована в теплообменных аппаратах, в частности, конденсаторах тепловых ТЭС и АЭС, а также в теплообменных аппаратах с фазовыми переходами (при конденсации рабочего тела) в пищевой, металлургической и химической отраслях.

4. Оценка перспектив продолжения работ по проекту

Результаты, полученные на втором этапе выполнения Соглашения, дают основание полагать, что продолжение работы позволит выполнить все поставленные задачи и результаты ПНИ найдут широкое применение в промышленности.