Исследования и разработка экспериментального образца системы управления дугогасящим реактором с подмагничиванием с функцией селективного определения поврежденного фидера в сети с компенсированной нейтралью

Работа проведена в 2015 г. в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 г.г.» в период с 01 июля 2015 г. по 31 декабря 2015 г.

Соглашение о предоставлении субсидии № 14.577.21.0096 от 08.08.2014г. (Этап 3).

Научный руководитель проекта: зав. каф. ТЭВН, к.т.н., доц., Хренов Сергей Иванович

Ответственный исполнитель: м.н.с. каф. ТЭВН, Скороходова Анна Юрьевна

1. Цель прикладного научного исследования и экспериментальной разработки

Разработка новых технических решений по обеспечению селективного отключения поврежденных фидеров в сетях 6-35 кВ, радикально сокращающих длительность существования режима однофазного замыкания на землю и исключающих необходимость поиска повреждений последовательными отключениями потребителей.

2. Основные результаты ПНИР

В 2015 году в рамках 3 этапа:

- 1. Разработана ЭКД на экспериментальный образец Системы управления.
- 2. Разработана Программа и методика экспериментальных исследований работы дугогасящего реактора 35 кВ с Системой управления в условиях ОЗЗ через высокие переходные сопротивления и перемежающихся дуговых замыканий.
- 3. Проведено исследование на экспериментально-испытательном стенде работы дугогасящего реактора 35 кВ с Системой управления в условиях ОЗЗ через высокие переходные сопротивления и перемежающихся дуговых замыканий на землю.
- 4. Проведен анализ результатов исследований и сформулированы уточненные алгоритмы работы Системы управления и технические требования к ней.
- 5. Сформулированы уточненные технические требования к конструкции управляемого реактора и фильтра нулевой последовательности 35 кВ.
- 6. Индустриальным партнером OAO «РЭТЗ Энергия» изготовлен и испытан в соответствии с ЭКД экспериментальный образец Системы управления.

Полученные результаты полностью соответствуют техническим требованиям к выполняемому проекту.

3. Область применения результатов ПНИР

Разрабатываемое оборудование ДЛЯ селективного определения поврежденных присоединений предназначается для установки в электрические сети с компенсированной нейтралью с целью сокращения среднего времени существования однофазных замыканий на землю в распределительных сетях до 1 минуты и исключения поисковых отключений неповрежденных фидеров, приводящих к перенапряжениям и переходу однофазных замыканий в двух- и трехфазные. Областью применения являются сети 6-35 кВ с компенсированной нейтралью, в частности, сети ОАО "Российские сети" и их сетевых подразделений, сетевые зарубежные компании, коммунальные и промышленные предприятия, имеющие на балансе сети 6-35 кВ.

Ожидаемый научно-технический эффект:

- сокращение средней длительности основного аварийного режима с 2 часов до 1 минуты;
 - более чем двукратное снижение аварийности в распределительных сетях;
 - снижение технологических потерь и уменьшение недоотпуска электроэнергии;
 - многократное сокращение числа кратковременных отключений потребителя.

4. Оценка перспектив продолжения работ по проекту.

Результаты, полученные на третьем этапе выполнения Соглашения, дают основание полагать, что продолжение работы позволит выполнить все поставленные задачи и результаты ПНИР найдут широкое применение в промышленности.

Комиссия Минобрнауки России признала обязательства по Соглашению на отчетном этапе исполненными надлежащим образом.